
MEng Individual Project Report

Imperial College London

Department of Computing

Meta-Learning Path Planning Networks

Author:
Zoltan Hanesz

Supervisor:
Dr. Ronald Clark

Second Marker:
Dr. Edward Johns

June 13, 2021

Abstract

Traditional path planning algorithms are characterised by long runtimes and additional constraints,
such as requiring a discrete set of possible points to visit. Due to great need for fast and efficient
path planning in realtime robotics, the focus of research in this field has recently shifted towards
developing deep learning-based techniques, achieving significantly improved inference times at the
cost of precision. This work aims to improve the predictive accuracy of the current state-of-the-art
method in higher-dimensional spaces without the need for collecting additional training data. The
main focal point of our approach is the application of meta-learning, a novel machine learning
concept, which promises to increase the efficiency of the optimisation process while simultaneously
enhancing performance. We show that our solution achieves consistent improvement on the baseline
method and demonstrate the potential of meta-learning in the domain of path planning.

Acknowledgements

I would like to thank Dr. Ronald Clark and Daniel Lenton for our regular meetings, which
resulted in many ideas that had a significant impact on this project’s success.

I would also like to thank my friends and family, most notably Zoltan, Angelika and Julia
Hanesz who have given me much support throughout all of my studies and during these last 15
months, which have been challenging both academically and in our personal lives.

Contents

1 Introduction 8
1.1 Objectives . 8
1.2 Challenges . 9
1.3 Contributions . 9
1.4 Ethical Considerations . 10

2 Background 11
2.1 Foundational Knowledge . 11

2.1.1 Deep Learning . 11
2.1.2 Signed Distance Functions . 14

2.2 Path planning algorithms breakdown . 15
2.2.1 Node-based algorithms . 15
2.2.2 Mathematical model-based algorithms . 16
2.2.3 Sampling-based algorithms . 17
2.2.4 Bioinspired algorithms . 19

2.3 Neural network-based methods . 19
2.3.1 Value Iteration Networks (VINs) . 19
2.3.2 Imitation Learning . 20
2.3.3 MPNet . 20
2.3.4 Other methods . 21

2.4 Meta-learning . 22
2.4.1 MAML . 22
2.4.2 First-order meta-learners . 23
2.4.3 Meta-SGD . 24

2.5 Summary . 24

3 Approach 25
3.1 Refining MPNet via unsupervised loss . 25

3.1.1 Path predictions using PNet . 26
3.1.2 Collision feedback term derivation . 26
3.1.3 Loss function formulation . 28

3.2 Applying MAML to MPNet . 28
3.2.1 Planner network architecture and initialisation 28
3.2.2 MAML training setup . 28

3.3 Alternative methods and improvements . 28
3.4 Unsupervised loss shortcomings . 29

3.4.1 Learning a collision residual . 30
3.4.2 Learning the collision term . 31

3.5 Notes on the optimisation process . 31
3.5.1 Path-level performance constraints . 31
3.5.2 Training instability . 32

3.6 Summary . 33

2

4 Experiments & Evaluation 35
4.1 Evaluation Preliminaries . 35

4.1.1 Neural network pre-training . 35
4.1.2 Data Characteristics . 36
4.1.3 Obtaining evaluation metrics . 36

4.2 Refining PNet with unsupervised loss . 37
4.2.1 Experiment setup . 37
4.2.2 Results . 37

4.3 Meta-Learning to improve PNet . 39
4.3.1 Experiment setup . 40
4.3.2 Results . 40
4.3.3 Limiting factors . 43

4.4 Alternative formulations . 44
4.4.1 Experiment setup . 44
4.4.2 Results . 44

4.5 Summary . 46

5 Conclusion 48
5.1 Future Work . 48

3

List of Figures

2.1 Diagram of an artificial neuron with 4 input signals x1, x2, x3x4, weights θ1, θ2, θ3, θ4, b
and activation function ϕ. 12

2.2 Simple Deep Neural Network with two fully connected hidden layers h(1)θ1 , h
(2)
θ2

and
output layer oθo . 12

2.3 Applying a convolutional kernel with pre-defined weights to blur the input image
[1]. CNNs learn the weights of kernels to maximise performance on the task. . . . 13

2.4 The output ht+1 of the hidden layer h at time step t+ 1 depends on the input data
x as well as the output ht at time step t. 13

2.5 [2] Unsupervised and supervised learning utilise gradient descent [3], an optimisation
algorithm to find a local minimum of a differentiable function. Various measures
need to be taken to ensure the algorithm isn’t stuck in suboptimal local minima. . 14

2.6 [4] Reinforcement learning models the underlying task as a Markov Decision Process
with states S0, S1, S2... ∈ S, actions a0, a1... ∈ A and seeks to find the best policy
i.e distribution of probabilities of taking a particular action in a given state that
maximises the reward R. 14

2.7 Example of a signed distance function used to represent the the shape of a duck.
These fields are commonly stored as raster images to enable real-time rendering. . 15

2.8 Comparing the number of nodes visited in Dijkstra’s shortest path algorithm and
A* as found in [5]. The start and goal are represented with pink and purple squares
respectively. 16

2.9 Fuel-optimal shortest path of unmanned vehicle in a 2-D environment presented in
[6]. 17

2.10 Illustration of the bug-trap problem and the tree built by RRT with its corresponding
Voronoi regions addressed in [7]. Here we can see that escaping the trap becomes
much harder for RRT once the sampling area is increased because the likelihood of
the sampling point falling inside the trap is much smaller. 18

2.11 Demonstration of the RRT* pruning phase in the work of Yang et al. [8]. 18
2.12 Overview of the Value Iteration Network model architecture presented in [9] 19
2.13 Overview of the training setup of both networks in the offline phase as proposed in

[10]. 20
2.14 Visualisation of each planning step depicted in the original paper [11] 21
2.15 Jurgenson et al. [12] visualising the data distribution on edges of obstacles. Green

spheres were generated by an RL agent during training, while red spheres are im-
itation learning targets produced by a path planner network. Green spheres are
dominant near obstacle boundaries pointing to a lack of data that imitation learn-
ing agents have on the obstacles. 21

2.16 Diagram of MAML found in [13] depicting the main learning objective θ and its
ability to quickly adapt to new tasks with only a few gradient steps. 22

2.17 Diagram of Meta-SGD [14] illustrating its two-level learning process. Gradual learn-
ing is performed across various tasks to train the meta-learner model parameterised
by (θ, α). Similarly to MAML, this meta-learner can perform rapid adaptations
to specific tasks, with the main difference being the learned α, which promises to
further accelerate the adaptation process. 24

4

3.1 Diagram of our MAML meta-learning pipeline. PNet is adapted to T environments
for A number of adaptation steps per environment using Ladapt, yielding networks
PNetθ′i,A where i ∈ [0, T]. The weights θ of PNetθ are then updated via the sum of
Lmeta taken from each of the adapted networks. 25

3.2 The collision feedback term c(x) guides the network parameters θ so that the pre-
dicted paths are further away from the obstacles by minimising the SDF-based loss.
Paths generated after a couple of gradient steps (green) avoid collisions much better
compared to the initial prediction (blue). 26

3.3 The path length term l(x) promotes parameter updates to θ so that the predicted
paths have minimal length. It is useful for exploiting possible shortcuts and restrict-
ing the amount of unnecessary collision avoidance cause by c(x). 26

3.4 Visualisation of the values of the collision term computed for each point in the scene
i.e. sigmoid(− min

om∈O
||p − om||2),∀p ∈ E, where E is the set of all points in the

environment. The areas near the obstacle point clouds visibly have a much higher
cost associated to them, pushing any path containing points in the red regions away
from the obstacles. 27

3.5 Comparing two different path planning problems, where the environment and the
start point are the same, but setting the obstacle avoidance weighting based on the
goal could be beneficial. 29

3.6 Diagram of the updated MAML pipeline with the inclusion of RNet. Here Ladapt is
computed using the path predictions P̂i,j as well as the residual terms RP̂i,j

. These
operations make the updated parameters θ′ dependent on RNet’s weights φ, allowing
to simultenously backpropagate through Lmeta with respect to θ and φ during the
meta-update. 30

3.7 The L2 loss of the blue path points with respect to the expert demonstration (green)
is visibly better compared to the orange path. Due to the nature of path planning,
the best solutions often narrowly avoid obstacles, so simply aiming to get as close
as possible to the ideal path does not always lead to a collision-free outcome. . . . 32

4.1 The 4 plots below depict the collision rate obtained after 5 adaptation steps for
various thresholds γ. At each γ, the path is labeled collision-free if its collision
percentage is below γ, allowing us to consider "almost collision-free" paths as well
with up to 10% collision percentage. Ladapt consistently improves the collision rate
for the seen environments for all ρ, whereas unseen environments benefit from higher
ρ emphasizing the collision term c(x). 39

4.2 Validation losses measured during the training of MAML, FOMAML and Reptile.
FOMAML is clearly the most suitable method for our use-case. MAML suffers from
great instability, most likely due to noise in the second derivative terms coming
from the Lmeta. Reptile is fundemantally unsuitable because of the absence of
Lmeta during training and the updates promoted by Ladapt pull it away from the
objective over-time. 40

4.3 Collision rate comparison between RRT*, PNet, Adapted PNet with ρ = 2.0 (best
overall collision rate from section 4.4.2) and FOMAML with ρ = 2.0 on the Sim-
ple2D dataset. FOMAML struggles to improve the collision rate in seen envi-
ronments despite a better L2 loss, but boosts the performance slightly in unseen
environments. 41

4.4 Collision rate comparison between RRT*, PNet, Adapted PNet with ρ = 2.0 and
FOMAML with ρ = 2.0 on theComplex3D dataset. Our model achieves noticeable
reduction in collision rate in all environments. 42

4.5 In both 2D and 3D environments, the paths generated by FOMAML (black) after
adaptation via Ladapt maintain a lower average L2 loss to the ground truth paths
(blue) than the paths generated by Adapted PNet (green), resulting in better paths
overall. 43

4.6 One of the most common failure cases, especially on the Simple2D dataset is when
despite our model doing a better job of optimising for the training meta-objective
i.e. L2 loss, the predicted paths still collide with the environment. On the other
hand, Adapted Pnet with the same number of adaptation steps (5 steps) manages
to avoid collisions by keeping further away from the ground truth path. 43

5

4.7 Due to the small learning rates enforced by the unstable optimisation process, a
number of colliding paths a very close to being fully corrected. In this image we can
see how much more sensitive FOMAML is to adaptations as opposed to Adapted
PNet, yet the path is still not entirely fixed. 44

4.8 In both seen and unseen environments, RNet and CNet show similar collision-rate
tendencies to FOMAML with fixed weights with very marginal differences. 45

4.9 The slope of the validation loss curve of the CNet architecture suggests that it might
lead to a noticeable improvement compared to FOMAML with fixed ρ given more
training time. 46

4.10 Heatmaps depicting the values predicted by CNet before and after meta-learning.
Thanks to the information from ground truth paths, CNet learns to prefer paths
that go narrowly around the obstacles. 46

6

List of Tables

4.1 Evaluating path length on the Simple2D dataset for various weighting constants
ρ ∈ {0.5, 1.0, 2.0} and number of adaptation steps A ∈ {1, 5, 10}. 38

4.2 Evaluating path length on the Complex3D dataset for various weighting constants
ρ ∈ {0.5, 1.0, 2.0} and number of adaptation steps A ∈ {1, 5, 10}. 38

4.3 Evaluating the L2 loss on the Simple2D dataset for various weighting constants
ρ ∈ {0.5, 1.0, 2.0} and number of adaptation steps A ∈ {1, 5, 10}. 38

4.4 Evaluating the L2 loss on the Complex3D dataset for various weighting constants
ρ ∈ {0.5, 1.0, 2.0} and number of adaptation steps A ∈ {1, 5, 10}. 39

4.5 The meta-learned FOMAML model clearly outperforms PNet, Adapted PNet and
gets close to the ground truth RRT* path length, especially on the seen environments
in Simple2D. 41

4.6 The L2 loss is reduced across the board in Simple2D, with most significant relative
improvements achieved for larger ρ. 41

4.7 The path length is also reduced in Complex3D, getting quite close to the ground
truth RRT* path length in seen environments. 42

4.8 The L2 loss is significantly improved in Complex3D, especially in the unseen envi-
ronments. Interestingly, the difference between various values of ρ is reduced after
meta-learning. 42

4.9 Path length comparison of RNet, CNet and FOMAML with various fixed weights ρ.
No considerable improvements are observed, but neither RNet nor CNet fall behind. 45

4.10 CNet is showing signs of being superior to RNet with improved L2 loss in seen and
unseen environments, despite fully relying on CNet predictions for the collision term
c(x). 45

7

Chapter 1

Introduction

Path planning, also known as the navigation problem, is a long-standing, well-established challenge
and one of the core areas of research in the field of robotics and artificial intelligence, with the
first notable solution being Dijkstra’s path planning algorithm [15] in 1959. Accelerated by the
development of self-driving cars, autonomous unmanned aerial vehicles (UAVs), mobile robots,
or robotic manipulators, the need for path planning algorithms enabling spatial navigation in
real-time scenarios has become even greater.

While extensive research has been conducted to tackle various aspects of this problem, tradi-
tional methods often fail in complex high-dimensional environments due to high memory require-
ments and computational time. Applying path planning methods in practice becomes even harder,
since besides the underlying scene, the physical properties/limitations of the moving robot itself,
the uncertainty or even partial lack of the image of the environment obtained via noisy sensor
readings also need to be taken into account. One class of approaches capable of handling all of
these constraints reasonably well are sampling-based algorithms (section 2.2.3), which sample ran-
dom points in the environment and apply a number of heuristics to connect these points in order
to build non-colliding paths between the start and goal points. These methods show promise, as
multiple studies have demonstrated, that they can produce feasible paths relatively quickly even
on harder problems, however they have also been proven to be rather heavy-tailed, so their ability
to plan optimal routes within a reasonable time frame can be brought into question.

Due to the recent popularity of machine learning, powered by the massive increase in avail-
able computing power, deep learning methods (section 2.3) have been employed to tackle the path
planning problem as well. Current research suggests that utilising deep learning to certain parts of
the problem can hold the key to increasing the inference speed, while still generating cost-effective
paths that can rival other state-of-the-art approaches. For instance, learning-based methods have
already been applied to two-dimensional path planning problems [9], or in combination with other
non-learning-based algorithms, even to higher-dimensional spaces with good success [11][16]. More-
over, the concept of meta-learning [17], also known as "learning to learn", aiming to create models
that generate well to a large variety of tasks and can be quickly adapted to maximise performance
on the individual tasks, shows promise to tackle the issues of long training times and lack of avail-
able data, which cripple many deep learning methods. These discoveries in the field of machine
learning and path planning serve as the main motivation for this master’s thesis.

1.1 Objectives

Inspired by recent promising results in deep learning-based path planning, the main objective
of this thesis is to apply meta-learning to increase the performance of path planning
networks (PNet) introduced in [10]. While the focal point of the original solution from [10]
is training these networks in a supervised fashion via expert demonstrations, our goal is to achieve
consistent improvement in the predicted paths without having to collect any additional ground
truth data. We split the work required to fulfill this objective into the following steps:

1. Train PNet - To acquire the starting point for meta-learning as well as the baseline for
evaluation, first we train our own path planning networks based on the implementation in
[18].

8

2. Unsupervised loss - Find an unsupervised loss function and verify its ability to consistently
enhance the performance of the networks obtained from 1. Here we focus mainly on the
consistency, not so much on the extent of the improvements.

3. Meta-learning - Increase the responsiveness of the path planning networks to the unsuper-
vised loss by training with a meta-learning pipeline customised to the problem at hand.

4. Analysis & enhancements - Evaluate various meta-learning methods to identify the one
that is most suited to this problem and find ways of maximising the performance boost given
by the unsupervised loss function.

1.2 Challenges

Overall, we faced many challenges related to the novel nature of our method, which required
careful considerations, and there were also other hurdles encountered throughout the duration of
this project. The most significant issues are listed below:

1. Unstable optimisation process - Perhaps one of the most characteristic and by far the
most time-draining challenge of this project is the unstable optimisation process caused by
essentially re-training pre-trained models to a slightly different objective and the instability
of Model-Agnostic Meta-Learning itself. This hindered our progress as we had to find the
perfect hyperparameters to ensure that our method reliably improves over time.

2. Long training times - In addition to being forced to reduce the speed of learning due to
stability issues, we also utilise computationally expensive operations in our solution, causing
long training times of up to 2 days. This fact considerably inhibited our ability to iterate on
our approach.

3. Evaluation metrics - Due to the lack of a widely accepted unified benchmark for path
planning algorithms, we had to come up with our own metrics that best captured the per-
formance of our method and of the baseline we aimed to improve on. Evaluating collisions
proved particularly tricky since there can be a vast difference in quality between two paths
that both collide with the environment depending on where and how many collisions occur.

4. Fine margins - Since in some cases only marginal improvements are achieved on simpler
problems, we had to perform thorough analysis across all available metrics to ensure our ap-
proach is valid, and thus we can move on to harder problems, expecting larger improvements.

1.3 Contributions

The contributions of this thesis can be summaries in 4 key points:

1. PNet refinement - We refine PNet by addressing its weakness of getting feedback only on
the predicted path segments during training using an unsupervised loss function providing
path-level response and show consistent increase in performance.

2. Meta-learning methods comparison - By comparing three well-known meta-learning
techniques commonly associated with each other, we critically evaluate the important differ-
ences between them and provide reasoning why some are not suited for our problem or any
similar task.

3. Meta-learning PNet refinement - Considered as the main focal point of this thesis, we
demonstrate the benefit of applying meta-learning to maximise PNet’s sensitivity to the
unsupervised loss, resulting in shorter paths with less collisions.

4. More informed refinement - We highlight the most significant limiting factors of our
solution and address the issue of the rigid mathematical formulation of the unsupervised loss
by extending it with additional information obtained during the meta-learning optimisation
process.

9

1.4 Ethical Considerations
Taking a critical look at any potential ethical issues relating to this project, we can say for certain
that all data used to train our model and for subsequent benchmarks in the evaluation phase are
synthetically generated environments and paths, therefore no living beings (i.e humans or animals)
are involved and no personal data is being processed. Furthermore, as all the used data and
methods are created by us or under the freely distributable MIT license, we do not have any
evident legal issues to consider.

The most notable areas where ethical consequences of our research need to be brought into
question are dual-use and misuse. It is a fact that autonomous vehicles are of great interest of
many militaries around the world. The possible use cases of such vehicles cover a wide range of the
spectrum, from unharmful cargo carriers through spying drones to autonomous fighter jets. While
it is important to note, that path planning itself does not directly constitute towards any human
lives being changed due to military intervention, it provides the tools for these vehicles to operate
more efficiently, which can make a big impact on how they will be deployed in the future. As in
the current days, it is relatively simple to obtain certain devices even via regular legal channels,
the possibility of criminal misuse of similar types of machines is also something to be considered.
Taking all of these factors into consideration, we emphasize that our model is not intended for any
of the uses described above.

10

Chapter 2

Background

In this chapter, first we introduce the main concepts which serve as the base building blocks of our
solution and are necessary to understand this work. Here we also briefly introduce other topics
used in existing methods closely related to ours for clarity. Specifically, we provide foundational
knowledge on various deep learning techniques and signed distance functions. Next, we break
down existing traditional path planning methods based on the taxonomy by Yang et al. [8] to give
context on where our solution fits in across the entire landscape of path planning algorithms. As
this study focuses mainly on non-neural-network-based methods, we also discuss these in further
detail separately in section 2.3. Lastly, we present the most relevant meta-learning approaches to
our work in section 2.4, highlighting their characteristics which point to their potential to produce
good results in the domain of path planning.

2.1 Foundational Knowledge

2.1.1 Deep Learning

Neural Networks

Virtually every computer program contains functions, which given some input parameters, perform
operations on the input data, and return some output. A simple example would be a search
function that returns elements from a collection of data matching the inputted search parameters.
In scenarios like this, when there is clear correspondence between the input parameters and the
function’s objective (e.g. string and integer comparisons are trivial), algorithms can be devised
by programmers to find these correspondences and solve problems with maximum certainty which
can then be translated to computer programs. A significantly more complex example would be
an image classification problem, where from a raw input image of a cat or a dog, the desired
function f(x) = y needs to be able to differentiate between the two. In these cases, traditionally
programmers are forced to come up with creative methods of approximating f (e.g. by extracting
geometrical features of the image). Inspired by the way humans learn [19], neural networks and
deep learning aim to tackle these types of problems by providing the computer with a large number
of expected input-output pairs, enabling it to learn to estimate the output of f .

More formally, neural networks can be described as functions f
′

θ(x) = ŷ, parameterised by
parameters θ, which are iteratively refined using the provided input-output pairs during so-called
training, to minimise the differences between the predicted outputs ŷ and true outputs y. The
fundamental components of every neural network are artificial neurons. As depicted in fig. 2.1,
the neuron N processes the incoming signals x1, x2, x3, x4 ∈ x using the network parameters
θ1, θ2, θ3, θ4, b ∈ θ and produces the neuron output by passing the signal from N through a non-
linear activation function ϕ to allow estimating non-linear functions. Neurons are traditionally
stacked vertically into network layers enabling each neuron to extract different information from
the provided input signal.

11

x1

x2

x3

x4

∗

∗

∗

∗

θ1

θ2

θ3

θ4

+

+

+

+

b

+

N ϕ

Figure 2.1: Diagram of an artificial neuron with 4 input signals x1, x2, x3x4, weights θ1, θ2, θ3, θ4, b
and activation function ϕ.

Deep Neural Networks

As the complexity of the task at hand grows, network layers are often connected horizontally to
form Deep Neural Networks [20]. The idea here is that in order to accurately approximate f using
just one layer, a large number of parameters θ might be required, but by viewing network layers as
separate functions, f ′θ can be expressed as a composition of multiple hidden-layers. In essence,
each layer can learn to extract different features from the input signal and by passing the output of
one layer to the other, a more expressive, better approximation of f can be achieved often with less
parameters used. In the end, the output of the last hidden layer is combined in the final output
layer as seen in eq. (2.1), with hidden layers h(1)θ1 , h

(2)
θ2

and output layer oθo .

f ′θ = oθo(h
(1)
θ1
◦ h(2)θ2) (2.1)

Results of research in recent years have shown that building deeper networks does provide
a clear performance benefit, and due to their modular design, many network architectures have
been developed to tackle a large variety of tasks. Alongside traditional Feed-Forward Net-
works, such as the one depicted in fig. 2.2, the two most notable are Convolutional Neural
Networks(CNNs) and Recurrent Neural Networks(RNNs).

x1

x2

x3

x4

x5

h
(1)
θ1

h
(2)
θ2

oθo

Figure 2.2: Simple Deep Neural Network with two fully connected hidden layers h(1)θ1 , h
(2)
θ2

and
output layer oθo .

Much like traditional methods that utilise convolutional kernels to extract key features of a
large possibly noisy input, such as the Sobel filter used for edge-detection [21], CNNs [22] learn
the weights of many different convolutional kernels to extract the most important information for
the given task. In a deep CNN, each hidden layer outputs feature maps as a result of applying
the learned kernels to the input, and with the use of pooling layers (e.g. max-pooling retains only
the largest value within the kernel window), the signal is reduced to a significantly smaller size
before the output layer produces the final output. RNNs [23] are another very important class of
deep learning methods. Their main characteristic is that the information flow is not described as

12

feed-forward, but cyclic, meaning that the input to the network is dependent on the output of the
network in the previous iteration. This property makes them particularly useful when modelling
problems with sequentially dependent data, such as machine translation and robot control.

Figure 2.3: Applying a convolutional kernel
with pre-defined weights to blur the input
image [1]. CNNs learn the weights of kernels
to maximise performance on the task.

x h o

Figure 2.4: The output ht+1 of the hidden
layer h at time step t + 1 depends on the
input data x as well as the output ht at time
step t.

Training a Neural Network

So far, we have briefly touched on the fact that neural networks are conditioned on parameters
θ, which are iteratively refined during training to optimise the model’s performance on the task.
Throughout this process, the network predictions f ′θ(x) = ŷ are evaluated via a chosen loss function
L that captures how well f ′θ approximates the true function f . A method called backpropagation
can then be performed by taking the gradient ∇θL(f ′θ(x)), updating θ in the direction of the
gradient in order to minimise future losses. It is important to note that the choice of L is critical,
since it has to be differentiable with respect to θ to compute ∇θL(f ′θ(x)), and its minima must
guide θ to a good approximation f ′θ ≈ f i.e the loss must correspond to the task. Due to limitations
caused by the large size of the training datasets, it is not feasible to compute the loss on the whole
dataset, so often a method called Stochastic Gradient Descent (SGD) [24] or its batch variant,
Mini-Batch SGD is used, which randomly chooses a single or a smaller number of training samples
from the training dataset X to compute the loss and thus approximate the true gradient. By
picking the right batch size, Mini-Batch SGD provides a good trade-off between computational
performance and accuracy of the update direction, reducing potential input noise and improving
the convergence rate as a result. In practice, other hyperparameters can be tuned to achieve good
convergence, like the learning rate α, which regulates the size of the update step taken in the
direction of the gradient. Optionally the gradient itself can be reduced by clipping its maximum
value or normalising by the magnitude of its l2-norm. Putting everything together, we get the
update equation eq. (2.2).

θ = θ − α ∗
n∑
i=0

∇θL(f ′θ(xi)) x1, ..., xn ⊂ X (2.2)

In contrast with traditional algorithm-based methods, where the solution is usually based on
an analytical solution to the task, when it comes to deep learning, a higher emphasis is placed on
the network architecture and on the method of learning. Below we discuss the three most common
learning paradigms in deep learning.

Learning paradigms

In today’s world, where large amounts of data are collected everywhere, supervised learning is
a very powerful technique. As the name suggests, the learning process is supervised by comparing
the network prediction with the desired output, often taking the mean squared error of the two as
training loss. The presence of ground truth data makes it suitable for classification tasks or even

13

complex regression tasks which might not be otherwise easily mathematically tractable. The most
challenging aspects of this method are obtaining sufficient amount of data to make them useful
and processing the data so that the network can achieve best results.

Unsupervised learning provides an interesting alternative to the data-hungry supervised
learning. Here the feedback to the network during training is granted in the form of a loss function
that is conditioned only on the input data and network output, so there is no requirement to
obtain ground truth data. Unsupervised loss functions can be much more sophisticated as their
minima has to correspond to the task at hand. While having a clear advantage in terms of data
requirements, this method is mainly used to identify patterns (e.g. clustering, compression) and
not widely utilised for complex tasks due to its reliance on hand-crafted loss functions, which may
not represent the desired behaviour accurately

For problems where we have an agent that can perform certain actions in a environment and
the goal is to devise a policy to determine the best actions to take in a given state, it might be
more practical to develop the policy from past experience. Based on this principle, reinforce-
ment learning (RL) techniques are traditionally trained by having an agent interact with the
environment based on the policy π, which is refined over time to maximise the reward received
after taking an action. For large state-action spaces, deep RL utilises a neural network to learn
the optimal policy via various Policy Gradient Algorithms. Despite not having requirements for
any input-output data, these methods may not be suitable in some scenarios, as they require the
environment to be readily available during training and the time required to sufficiently explore
the space is also a clear disadvantage.

Figure 2.5: [2] Unsupervised and supervised
learning utilise gradient descent [3], an opti-
misation algorithm to find a local minimum
of a differentiable function. Various mea-
sures need to be taken to ensure the algo-
rithm isn’t stuck in suboptimal local min-
ima.

Figure 2.6: [4] Reinforcement learning mod-
els the underlying task as a Markov Decision
Process with states S0, S1, S2... ∈ S, actions
a0, a1... ∈ A and seeks to find the best pol-
icy i.e distribution of probabilities of taking
a particular action in a given state that max-
imises the reward R.

2.1.2 Signed Distance Functions
The signed distance function (SDF) provides a way of expressing the relative distance of
points from the objects in a given environment. More formally, given a set Ω with boundary δΩ
in a metric space M with distance metric d (e.g Euclidean space with Euclidean distance), the
function returns the distance of an arbitrary point x ∈ M from the boundary of Ω. Depending
on whether the point is inside or outside the boundary, the assigned value is negative or positive,
which leads us to the general formulation of the SDF:

sdf(x) =

{
d(x, δΩ), if x /∈ Ω
−d(x, δΩ), if x ∈ Ω

(2.3)

Thanks to its formulation, it is very convenient for describing shapes of objects and has been
used in the field of computer graphics for real-time volumetric rendering and in computer vision

14

Figure 2.7: Example of a signed distance function used to represent the the shape of a duck. These
fields are commonly stored as raster images to enable real-time rendering.

[25]. Another great property is that if Ω is a subset of the Euclidean space, it is differentiable
in most cases, making it suitable for gradient-based learning. This characteristic combined with
the ability to accurately represent obstacles in the environment make it a great candidate for
use in gradient-based path planning problems to provide feedback during training. We also make
extensive use of the SDF in our solution, albeit with slight modifications given by the nature of our
input data, further discussed in section 3.1. Due to technical limitations, in some cases it might
be more efficient to train a neural network to predict SDF values using neural networks instead of
computing them as described in [26], which we will also explore further in section 3.4.

2.2 Path planning algorithms breakdown
According to [8], path planning algorithms can be broken down into 4 different categories as follows:

• Node-based algorithms

• Mathematical model-based algorithms

• Sampling-based algorithms

• Bioinspired algorithms

2.2.1 Node-based algorithms
The main characteristic of these algorithms is that they all explore through a set of points in a
graph to find the optimal path, hence why they are sometimes also referred to as discrete optimal
planning [27]. Note that this requires that the underlying scene is broken down into a fixed number
of nodes (e.g. split the input image into fixed-sized cells), and the weights of arches connecting the
nodes (i.e. connections between adjacent cells) are computed.

One of the oldest and most well-known node-based algorithms is Dijkstra’s shortest path
algorithm [15], which computes the optimal path between a specific source node and all the other
nodes in the graph as seen in the pseudocode in algorithm 1. Intuitively, we can see that the number
of nodes visited is much higher than the overall length of the optimal path due to the breadth-first
nature of the algorithm. In contrast, Best-First-Search, which plans a path by traversing the graph
in a greedy fashion, where every next step is determined based on some heuristic, clearly is less
likely to find an optimal path, but no move is wasted as they are all included in the final path.

A* [28] combines the main idea behind Dijkstra’s (favoring nodes that are close to the starting
point) and Best-First-Search (favoring nodes that are close to the goal) by employing a heuristic
estimate. It does so via an estimated path cost h(n) in combination with g(n), the path cost from
the starting node to the current node n. These are used to determine the node with the lowest
f(n) = g(n)+h(n) so it can be visited first. This enables A* to have better performance on average
than Dijkstra’s because it allows skipping certain nodes with a worse estimated path cost as seen

15

Algorithm 1 Dijkstra’s path planning algorithm

1: procedure Dijkstra(G,W : weighted graph; start : node; finish : node)
2: tree[start] = true
3: for x in adj[start] do:
4: fringe[x] = true; parent[x] = start; distance[x] = W[start, x] . Initialisation
5: while not tree[finish] and fringe nonempty do:
6: f = GetMin() . Obtain fringe node with minimal distance[f]
7: fringe[f] = false; tree[f] = true . Move f to the tree from fringe nodes.
8: for y in adj[f] do
9: if not tree[y] then

10: if fringe[y] then
11: SeenUpdate() . Update distance and parent arrays if shorter path found.
12: else
13: UnseenUpdate() . Add y to fringe nodes, update its distance and parent.

return distance, parent

in the comparison in fig. 2.8 (i.e. there is no point visiting a node which is known to lead to a less
optimal path). Note that the choice of the heuristic significantly impacts the rate of improvement
compared to Dijkstra’s algorithm, and it also must be admissible such that h(n) ≤ h∗(n), where
h∗(n) is the optimal path cost (i.e. the heuristic does not overestimate the effort to reach the goal)
to ensure that the optimal path is found.

Over the years, some alternative methods have emerged based on A*, such as LPA*[29] or
Focused D*[30], which improve the performance of A* in certain settings. However, similarly to
A*, they all rely on the fact that the scene is decomposed into a graph with a discrete set of nodes,
so every change in the environment requires that the graph is rebuilt (from potentially noisy sensor
readings), which significantly hinders the usability of these algorithms in practice. Considering real
scenarios, such as a robot in a complex high dimensional space, the computational complexity of
node-based algorithms is not sufficient.

Figure 2.8: Comparing the number of nodes visited in Dijkstra’s shortest path algorithm and A*
as found in [5]. The start and goal are represented with pink and purple squares respectively.

(a) Dijkstra’s shortest path algorithm: No
notion of path cost estimation, so all neighbour-
ing nodes are visited resulting in potentially un-
necessary visits.

(b) A* algorithm: Path cost estimation
heuristic allows skipping visits of nodes that
cannot be parts of the optimal path.

2.2.2 Mathematical model-based algorithms

The most widely used model-based algorithms fall under linear programming-based and optimal
control-based methods. Both of these model the environment (kinematic constraints) and the
system (dynamic constraints), and use the acquired constraints to bound the cost function in
order to minimise it and therefore find the optimal path.

Linear-programming methods, such as MILP [6] formulate the path planning problem of
minimising a cost function bound by linear equality and inequality constraints. The cost functions

16

to be optimised in these scenarios can for example be the path length or fuel consumption. These
methods are very expressive as the constraints can include various physical limitations on the
movement of the robot as well as restrictions enforced by the environment itself, such as obstacles
[31]. This is a major upside when considering the use of these algorithms in real-life scenarios
compared to node-based approaches, where incorporating the dynamics of the robot can lead to
an overly complex problem. Optimal control-based approaches formulate the path planning
problem in the form of differential equations. Similarly to linear-programming methods, these can
efficiently represent a large variety of constraints.

Figure 2.9: Fuel-optimal shortest path of unmanned vehicle in a 2-D environment presented in [6].

Due to their great expressiveness, these approaches can be considered for real-time scenarios,
but they often suffer greatly from poor inference speed for large problems. While there have been
some approaches to reduce the inference time (e.g. by breaking down the problem into subproblems
[32]), these still fall behind other sampling-based methods discussed in section 2.2.3.

2.2.3 Sampling-based algorithms
This class of algorithms utilises random sampling of points in a pre-defined obstacle-free space to
build a path or a network of nodes containing paths from the starting point to the goal. Due to the
efficiency of sampling random points, these algorithms can find feasible paths relatively efficiently
even in high-dimensional continuous spaces. Yang et al.[8] further divide these algorithms into
active (can achieve the best feasible path all on its own) and passive (generate a road network
containing multiple feasible paths and a separate node-based algorithm is used to discover the
optimal path).

Rapidly exploring random trees (RRT)

This method, first proposed by LaValle [33] in 1997 can swiftly discover a feasible path between
two points xinit and xgoal, given an obstacle space Xobs, obstacle-free space Xfree and maximum
step size γ. The algorithm builds a tree by performing the following steps repeatedly:

1. Randomly sample a point xrand in Xfree.

2. Find the nearest tree node xnear to xrand.

3. Attempt to connect xrand and xnear. If the distance between these two nodes is greater
than γ, create a new node xnew along the vector (xnear, xrand) starting from xnear. If
xnew ∈ Xfree, connect xnew and xnear, otherwise do not connect any nodes.

While RRT does a fine job of discovering a feasible path between two nodes, a few improvements
have been developed to tackle its main shortcomings. Dynamic Domain RRT (DDRRT) [7] tackles

17

Figure 2.10: Illustration of the bug-trap problem and the tree built by RRT with its corresponding
Voronoi regions addressed in [7]. Here we can see that escaping the trap becomes much harder for
RRT once the sampling area is increased because the likelihood of the sampling point falling inside
the trap is much smaller.

the issue of Voronoi bias of RRT when sampling. DDRRT introduces spheres around the nodes of
the graph, and it only attempts to connect those randomly sampled points to the tree which lie
within the sphere of the corresponding nearest node, ensuring fast exploration.

An even bigger disadvantage of RRT is that it has been proven to be not asymptotically optimal
[34]. For this exact reason, RRG and its tree version, RRT* [35] were developed. RRG differs from
the original RRT in the connection phase, as in RRG the new node xnew (i.e. the one being added
to the graph) is not only connected to the nearest node, but to every other node within a certain
radius. By connecting more nodes at the same time, a complex network is generated, which is
proven to be asymptotically optimal. Similarly to PRM [36], this method produces a network of
nodes, therefore it requires a secondary node-based path planning algorithm to find the optimal
path, but research suggests that RRG performs better in a general setting than PRM [37]. RRT*
applies a similar logic during the connection phase, with the only difference being that in order to
maintain a tree structure, only those nodes are connected to xnew, where the path going through
xnew would prove to be better than their current path (so-called pruning phase).

Figure 2.11: Demonstration of the RRT* pruning phase in the work of Yang et al. [8].

(a) Connection phase: Similarly as in RRG,
besides xnearest, all the nodes within a certain
radius are considered for connections with xnew

.

(b) Pruning phase: Maintain the tree struc-
ture by pruning away those edges, which would
lead to higher cost paths.

Compared to the path planning methods mentioned previously, RRT* tackles all main issues
of node-based algorithms in high-dimensional spaces, since due to sampling, there is no need to
extract a separate graph representation of the underlying scene, and it can find feasible paths very
quickly. However, it has also been shown that RRT* requires an infinite amount of time to find
the optimal solution [38] and suffers from memory issues as it continues to explore the entire space

18

[39].

2.2.4 Bioinspired algorithms

Bioinspired algorithms aim to imitate the way humans or other natural beings think or behave.
Their goal is to build systems, which can learn to perform tasks just as a human would. These
techniques are further split into Evolutionary algorithms and Neural Network-based algorithms.
The basic steps of an evolutionary algorithm for path planning were proposed by Jia et al. [40]. In
the initialisation phase, the algorithm is provided with a number of feasible paths which serve as the
first generation. Feasible paths can be efficiently generated using RRT as in [41]. This is followed
by a cycle of evaluation, parent selection, mutation phases, where the paths are continuously
evaluated, the best performing paths are kept, and the information between them is shared to
produce the next generation. The best individuals remaining at the end of this cycle are then
decoded and returned as optimal paths.

2.3 Neural network-based methods

With the rapid rise in popularity of deep learning in recent years, several research initiatives have
been taken to apply deep learning approaches to the problem of path planning. These utilise a
variety techniques, such as reinforcement learning [42, 43, 44, 45], supervised learning [11, 46] or
imitation learning [47, 48] to provide an alternative to more traditional path planning algorithms
discussed in section 2.2, with main focus on use in real-time scenarios in high-dimensional environ-
ments. In the following chapter, we present some of the main methods developed in this domain
and aim to point out their shortcomings, which our method improves on.

2.3.1 Value Iteration Networks (VINs)

VINs, introduced by Tamar et al. [9], build on the concept of traditional value iteration in re-
inforcement learning, where an RL agent learns the value of each state in the problem MDP in
order to identify the actions with the lowest cost in a given state to produce the optimal path.
To deal with situations where the underlying MDP and perhaps even the reward function is un-
known, [9] introduces a differentiable value iteration module inside the planning network, which
learns some other MDP different from the actual one but that provides useful plans for the actual
problem. This is crucial because at no point do VINs require any knowledge about the true reward
maps or value maps, we simply hope that by performing actions based on the VI module, the
neural network learns a useful MDP. This method certainly shows promise as it generalises well
on various tasks within a grid world as shown in [9], but it is currently unclear how it performs in
higher-dimensional environments.

Figure 2.12: Overview of the Value Iteration Network model architecture presented in [9]

(a) The VIN architecture as a whole in an
RL setting. The VI module predictions and
real-world observations are used to decide a
policy. fR and fP are learned as part of the
policy learning process to facilitate the con-
nection betweenM (MDP of the VI module)
and M (true MDP).

(b) The inner VI module following a NN architecture.
Each VI iteration is seen as passing the previous value
function and reward function through a convolution
and max-pooling layer. Thus, each convolution layer
layer corresponds to the Q-function for a specific ac-
tion.

19

2.3.2 Imitation Learning
When it comes to path planning problems, the optimal path is often heavily influenced by the
implicit structure of the environment (i.e. configuration of objects/obstacles in the environment).
Most current state-of-the-art methods don’t exploit this property as they aim to sample the entire
action space, and therefore they often struggle to converge in a reasonable time and are susceptible
to falling into poor local minima. Imitation learning-based solutions were introduced to tackle
this issue by training neural networks using expert demonstrations, giving the model additional
information about certain areas which might be more beneficial to explore than others. This
also makes them suitable to combine with sampling-based algorithms, which can benefit greatly
from improved sampling heuristics. One such approach found in [47] uses deep neural networks
trained via expert demonstrations to adaptively sample the configuration space for sampling-based
algorithms. The biggest drawback of imitation learning-based techniques is that they rely on the
presence of expert demonstrations, making them difficult to train for many real-world robotics
scenarios. Additionally, these demonstrations are produced via interactions with the environment,
which may not be readily available and can bias the training dataset to contain few datapoints on
the areas around the edges of obstacles as shown in fig. 2.15.

2.3.3 MPNet
Motion Planning Network (MPNet), introduced by Qureshi et al. [10, 11] uses two neural networks
to solve the path planning problem. The first network is an encoder (ENet), which embeds the
obstacles provided as point clouds into latent space. This makes it readily applicable in robotics,
where the image of the environment is usually obtained via numerous sensor readings frequently
represented as point clouds. The second model is a planning network (PNet), which learns to
predict path segments using the obstacle point encodings produced by ENet.

ENet can be trained in an end-to-end fashion with PNet or as a contractive autoencoder [49] in
an encoder-decoder architecture, where a reconstructive loss is used to learn a robust and invariant
feature space required for planning and genalisation to unseen workspaces. PNet is trained via
supervised learning as a feedforward neural network. Given the obstacle representation, start
and goal points, PNet predicts a point representing the next position of the robot, therefore the
training objective is to minimise the mean-squared-errors between the predicted points and the
points contained in the ground truth path. These can be provided as an expert demonstration by
a human or generated by other highly accurate methods, such as RRT*.

Figure 2.13: Overview of the training setup of both networks in the offline phase as proposed in
[10].

(a) The encoder network (ENet) in the encoder-
decoder architecture. The reconstructive loss
has 2 components: mean-squared-error of ob-
stacle point reconstructions; a penalising com-
ponent based on the size of the encoder param-
eters θe.

(b) PNet takes the current point xt, the end goal xT
and the obstacle encoding provided by ENet to predict
the next step x̂t+1 in the path. The mean-squared error
between this point and the point predicted by the oracle
is used as training loss.

The actual online path planning process of MPNet utilises the trained networks in combination

20

with a non-model-based approach. Here, the outputs of ENet and PNet are used repeatedly in a
bidirectional fashion to produce a path between two points in multiple steps:

1. Global planning: Create a path by marching from the start and goal points in both directions
using the predictions provided by PNet, connecting points, which do not collide with the
environment.

2. Neural replanning: Uses Pnet recursively on the non-connectable consecutive states produced
in the global planning phase.

3. Steering: Connect the new points generated in the replanning phase to form a fully connected
path. This may need to be performed multiple times depending on the success of neural
replanning.

4. Lazy states contraction: Prunes out redundant states making the path more efficient.

Figure 2.14: Visualisation of each planning step depicted in the original paper [11]

In terms of performance, in the original paper [10], MPNet was shown to outperform state-
of-the-art sampling-based algorithms in unseen 3D environments and 7 DOF robot manipulators,
providing a much better inference speed while maintaining near-optimal path costs. Its two main
weaknesses are a long training time (around 15 hours) and its supervised learning nature.

2.3.4 Other methods

OracleNet introduced by Bency et al. [16] proposes an algorithm utilising recurrent neural networks
constructed of stacked LSTM layers [50]. Similarly to MPNet, the final path is produced via
bidirectional path planning, where the trained network outputs the individual path steps. Its
biggest disadvantage compared to MPNet is that no obstacle information is used during training,
therefore it needs to be retrained for every new scene, limiting its use to largely static spaces (e.g.
car factories, airport terminals).

Figure 2.15: Jurgenson et al. [12] visualising the data distribution on edges of obstacles. Green
spheres were generated by an RL agent during training, while red spheres are imitation learning
targets produced by a path planner network. Green spheres are dominant near obstacle boundaries
pointing to a lack of data that imitation learning agents have on the obstacles.

21

The work of Jurgenson et al. [12] highlights an interesting issue of imitation learning and
supervised learning-based algorithms. According to [12], the fact that these methods use expert
demonstrations to learn optimal paths is troublesome in environments with tight passages. In
these situations, the expert demonstrations strictly avoid hitting any obstacles, which leads to
an underrepresentation of obstacle boundaries in the dataset, so there is no guarantee that the
model will truly learn to avoid obstacles. To solve this, in [12] a deep deterministic policy gradient
algorithm [51] is used, training a model via interaction with the environment. While this solution
tackles the proposed issue, interacting with the environment for so long is not realistic in many
path planning scenarios.

2.4 Meta-learning

Meta-learning [52, 53, 54] is a concept, which takes a novel approach to tackling traditional machine
learning problems. It draws from the natural ability of humans to adapt and quickly learn new
tasks as they progress with age. The idea here is that at a young age, we learn a variety of basic
concepts and skills, and this experience allows us to later master even harder tasks in a relatively
short amount of time. The goal of Meta-learning is to build machine learning models with this exact
property. Upon success, this idea could significantly improve on training times and the amount
of data required, both being a major disadvantage of current state-of-the-art deep learning-based
planners. In this chapter, we introduce the most promising solutions published recently in this
domain relevant to our path planning optimisation problem.

2.4.1 MAML

Model-Agnostic Meta-Learning (MAML) [13] is a fairly general optimisation algorithm applicable
on any model trained via gradient descent. In [13], its adaptability was demonstrated on multi-
ple different architectures, including classification, regression, and policy gradient reinforcement
learning. In contrast with popular meta-learning methods [55, 56, 57], its objective isn’t to learn
the update function or learning rule, so the number of learned parameters is not increased in the
process. Additionally, it doesn’t constrain the model architecture, as it is in the case of a Siamese
network [58].

Figure 2.16: Diagram of MAML found in [13] depicting the main learning objective θ and its ability
to quickly adapt to new tasks with only a few gradient steps.

Its main objective can be summarised from a feature learning standpoint as constructing an
internal representation broadly applicable to many tasks and with the ability to produce good
results via a few or even just a single gradient step. From a dynamic systems standpoint, it can
be seen as maximising the sensitivity of the loss functions of new tasks with respect to the model
parameters, to ensure that small changes to the parameters can lead to big improvements on these
new tasks. The only assumptions made are that the model is parameterised by a vector θ, and the
loss function is smooth enough in θ that gradient-based learning techniques can be applied.

The training process itself is characterised by a nested loop structure, where both the outer
and inner loop use batches of data to perform updates to a different set of parameters. More
specifically, the inner loop performs the adaptation of the model parameters θ to a specific task
Ti sampled from a distribution of tasks p(T) to produce the parameter vector θ′i via a gradient

22

update from θ. The outer loop then performs a gradient update to θ using the gradients of the
losses of all the tasks Ti parameterised by their respective θ′i. This outer loop update is called
the meta-update. The overall optimisation process can then be summarised as the following
minimisation problem:

min
θ

∑
Ti∼p(T)

LTi(θ′i) =
∑

Ti∼p(T)

LTi(θ − α∆θLTi(θ))

With this objective in mind, the model parameters are updated via stochastic gradient descent
as can be seen in the pseudocode of MAML in algorithm 2. This way of updating θ involves
computing a gradient through a gradient, therefore it requires an additional backward pass, which
hinders its performance somewhat and is later addressed by an alternative method in 2.4.2.

Algorithm 2 Model-Agnostic Meta-Learning [13]

1: procedure MAML(p(T) : distribution over tasks; α, β : step size hyperparameters)
2: Randomly initialise θ
3: while not done do:
4: Sample batch of tasks Ti ∼ p(T)
5: for all Ti do
6: Evaluate ∆θLTi(θ) with respect to K examples
7: θ

′

i = θ − α∆θLTi(θ) . Compute parameters for new tasks using gradient descent
8: θ ← θ − β∆θ

∑
Ti∼p(T) LTi(θ

′

i) . Update the model parameters using gradient descent

Overall, MAML proves to be a good starting point for many meta-learning implementations due
to its versatility and simplicity. [13] shows that in many settings, it can either rival or outperform
other approaches of its kind and considering that using a reinforcement learning model, it actually
outperforms traditional RL methods for 2D navigation and locomotion tasks in terms of required
gradient steps, its application in path planning appears promising.

2.4.2 First-order meta-learners

As mentioned in 2.4.1, MAML’s parameter updates are computed via a second-order derivative of
gradients, increasing its computational complexity significantly. First-order MAML (FOMAML)
solves this issue by ommiting the second derivatives. The reason why this is possible can be derived
by examining the gradient gMAML as part of the θ = θ − βgMAML outer loop gradient update:

gMAML = ∆θL(1)(θk)

= ∆θkL(1)(θk) · (∆θk−1
θk) · ... · (∆θ0θ1) · (∆θθ0) by applying chain rule

= ∆θkL(1)(θk) ·Πk
i=1(∆θi−1

θi) · I
= ∆θkL(1)(θk) ·Πk

i=1I − α∆θi−1
(∆θL(0)θi−1)

Thus by ignoring the second derivative term we get:

gMAML = ∆θkL(1)(θk)

This approximation of the original method lead to a 33% improvement in computational speed
and performed almost identically on the MiniImageNet dataset in a few-shot classification setting
[13].

Another remarkably simple yet effective algorithm is Reptile, developed by Nichol et al. [59].
The biggest difference here is that instead of performing a gradient descent update in the outer
loop, the model parameters are simply moved towards the new parameters. The parameter update
is defined as: θ ← θ + β 1

n

∑n
i=1(θ′i − θi), where θ′i represent the new parameters trained via

multiple SGD steps in the inner loop. In [59], Nichol et al. provided a theoretical explanation
why this method works by approximating it with a Taylor series, but due to the lack of successful
experiments provided, its practical usefulness remains to be seen.

23

2.4.3 Meta-SGD
While all the methods mentioned previously learn the parameters of a model to serve as initializa-
tion for adapting to a specific task, Meta-SGD [14] publishd by Li et al. promises higher capacity,
by "learning to learn" the learner update direction and learning rate as well in a single supervised
learning or reinforcement learning process. The formulated minimisation problem is similar to
MAML and takes the following form:

min
θ,α

∑
Ti∼p(T)

Lmeta(Ti)(θ
′
i) =

∑
Ti∼p(T)

Lmeta(Ti)(θ − α ◦∆Ladapt(Ti)(θ))

Here Lmeta and Ladapt represent the loss functions used during the meta-update and adap-
tation updates respectively and ◦ is the element-wise multiplication operator. This objective is
differentiable with respect to both θ and α as well, which means that it is solvable with a sim-
ilar gradient-based method as MAML. In [14], Li et al. demonstrate that Meta-SGD performs
marginally better on the same benchmarks that MAML [13] was evaluated on, so it could prove
to be useful for our use-case as well.

Figure 2.17: Diagram of Meta-SGD [14] illustrating its two-level learning process. Gradual learning
is performed across various tasks to train the meta-learner model parameterised by (θ, α). Simi-
larly to MAML, this meta-learner can perform rapid adaptations to specific tasks, with the main
difference being the learned α, which promises to further accelerate the adaptation process.

2.5 Summary
Our effort to research the background and existing solutions in the domain of path planning can
be summarised in the following points:

• Traditional path planning algorithms focus mainly on finding optimal paths and do not
place a high emphasis on inference speed, making them difficult to use in practice, as
their performance is hindered by increasing the complexity of the environment in general.
Sampling-based solutions seem to offer some flexibility when it comes to the path optimal-
ity/computational speed trade-off, but in complex environments, even these require time in
order of 10s.

• Neural network-based solutions provide a great alternative to the traditional methods. Their
inference speed and ability to learn to predict paths in high-dimensional spaces is particularly
attractive for practical applications. Their biggest downside is that they often require a large
number of expert demonstrations, take a long time to train [11] and might require re-training
for different environments [16].

• Meta-learning is a relatively new subfield of machine learning, which promises to solve the
main issues outlined above. It does so by training models which can generalise to new tasks
quickly with only a few required training steps. Current research on this topic shows that
there is merit in applying meta-learning to the problem of path planning.

24

Chapter 3

Approach

In the following chapter, we present our solution on using meta-learning to refine and improve
the path planning neural networks (PNet) presented in [10]. We start off by introducing a loss
function, which utilises a signed distance function (SDF) compatible with the PNet dataset, and
show that it corresponds well to the task (i.e. finding the shortest collision-free path) and thus
can be used for deep learning-based path-planning. We follow up by presenting our formulation
of applying Model-Agnostic Meta-Learning (MAML) to PNet. Lastly, we showcase a number of
improvements/modifications to the initial solution.

...

...

Figure 3.1: Diagram of our MAML meta-learning pipeline. PNet is adapted to T environments
for A number of adaptation steps per environment using Ladapt, yielding networks PNetθ′i,A where
i ∈ [0, T]. The weights θ of PNetθ are then updated via the sum of Lmeta taken from each of the
adapted networks.

3.1 Refining MPNet via unsupervised loss

One of PNet’s main disadvantages is the dependence on expert demonstrations or paths generated
via other methods (e.g. RRT, RRT*) as it’s trained in a supervised fashion. While this is not
catastrophic for standard PNet at test time, our meta-learned PNet will be trained to rapidly
adapt to a given task, therefore it will have to perform some kind of learning at test time. This
adaptation cannot be reasonably performed via supervised learning, especially in environments
unseen during training, where we may not have any ground truth information available. For
instance, in a practical scenario, where a robot is required to navigate in a disaster-struck area, it
must be able to adapt its planner network to the new environment just from the scene point-clouds
obtained via lidar or other sensor measurements. To accommodate for this requirement, we look
for a way to define a function that allows for training/refining PNet in an unsupervised fashion.

25

start

goal

Figure 3.2: The collision feedback term c(x)
guides the network parameters θ so that the
predicted paths are further away from the
obstacles by minimising the SDF-based loss.
Paths generated after a couple of gradient steps
(green) avoid collisions much better compared
to the initial prediction (blue).

start

goal

Figure 3.3: The path length term l(x) pro-
motes parameter updates to θ so that the pre-
dicted paths have minimal length. It is useful
for exploiting possible shortcuts and restricting
the amount of unnecessary collision avoidance
cause by c(x).

We divide PNet’s task into two main objectives: find a collision-free path; find the path with
minimal length. Based on this assumption, a loss function can be defined as a sum of two terms,
each of which provides feedback on one of the two main objectives. In this report, the notation
used for the path length feedback and collision feedback is l(x), c(x) respectively, where x is the
input containing only information about the scene and the predicted path. Figure 3.2 and fig. 3.3
demonstrate the intuition behind these two terms and how they can contribute to improving
on both objectives. The path length feedback can be easily computed as the sum of Euclidean
distances between intermediate points in the path as given in eq. (3.1) where p1..., pn ∈ P is the
set of path points. Deriving c(x) requires more careful consideration and is discussed in detail in
section 3.1.2.

l(x) = l(P) =

n−1∑
i=0

||pi − pi+1||2 (3.1)

3.1.1 Path predictions using PNet

As described in section 2.3.3, PNet is trained to predict the next point in the path from a given
location and uses a combination of network outputs and other heuristics to produce full paths.
Since we intend to apply our unsupervised loss function on the path-level, the paths are obtained
by directly concatenating the points predicted by PNet in an iterative fashion. We realise that
dismissing the heuristics used in the MPNet paper [10] might hinder the quality of the paths,
but these would increase the inference time and would make batch predictions impossible, both
of these factors being crucial later during meta-learning. To guarantee completeness, if the points
outputted by PNet don’t end up being close enough to the goal in a certain number of prediction
iterations, we append the goal point as the last path point. In practice, paths are generated in
batches and optionally padded with their respective goal points in case the goal was reached in a
smaller number of steps. The whole procedure is outlined in pseudocode algorithm 3.

3.1.2 Collision feedback term derivation

The criteria that this term needs to satisfy is that the higher the collision percentage of the path
(i.e. percentage of the path colliding with the environment), the higher the cost assigned to it.
This can be achieved via an SDF-like formulation, where we consider every point in the point-
cloud to be a separate object and assign the cost based on the negative distance of each path point
from the closest object. Note that in order to compute this loss uniformly across the entire path
and to eliminate potential uneven distribution due to padding during batch predictions, we apply
polyharmonic interpolation [60] to the predicted path points and sample new points equidistantly
instead of using the PNet predictions directly. In addition to evenly distributed path points,
we use the sigmoid function to normalise each negative distance term and to prevent assigning

26

Algorithm 3 Batch path generation using PNet

1: procedure GeneratePaths(PNet: planner network, P: paths to be generated)
2: pathsi ← [Pi, start], i = 0, 1...length(P) . Initialise path start points
3: goal_reachedi ← false, i = 0, 1...length(P) . Set goal not reached for every path
4: curr_step ← 0
5: while not all(goal_reached) and curr_step < max_steps do:
6: curr_step ← curr_step + 1
7: pnet_inputi ← [Pi, scene_encoding, Pi, start, Pi, goal], i = 0, 1...length(P)
8: point_predictions ← PNet(pnet_input)
9: for i in range length(P) do

10: if not goal_reachedi then
11: pathsi ← append point_predictionsi
12: else
13: pathsi ← append Pi, goal . Pad paths with the goal point
14: goal_reachedi = ||point_predictionsi - Pi, goal||2 < ε

15: for i in range length(P) do . Append goal point to to incomplete paths
16: if not goal_reachedi then
17: pathsi ← append Pi, goal

unnecessarily large loss values to points, which are sufficiently far from obstacles. Equation (3.2)
describes the full formulation of c(x) = c(P,O), where pn ∈ P denotes n-th point in the set of
resampled path points and om ∈ O denotes the m-th point in the obstacle point-cloud O. From
the heatmap in fig. 3.4 we can see that c(P,O) does a good job of describing the obstacles in the
environment.

c(P,O) =
∑
pn∈P

sigmoid(− min
om∈O

||pn − om||2) (3.2)

Figure 3.4: Visualisation of the values of the collision term computed for each point in the scene
i.e. sigmoid(− min

om∈O
||p− om||2),∀p ∈ E, where E is the set of all points in the environment. The

areas near the obstacle point clouds visibly have a much higher cost associated to them, pushing
any path containing points in the red regions away from the obstacles.

27

3.1.3 Loss function formulation

Finally, l(x) and c(x) can be combined into one loss function, which will be used in the MAML
inner loop during training and for adaptation at test time. A weighting factor ρ is also introduced
to balance the two different terms. The final formulation is given in eq. (3.3). Quantifiable evidence
of the overall effectiveness of this function to refine the weights θ of PNet is further discussed in
section 4.2.

f(x) = f(P,O) = l(P) + ρ ∗ c(P,O) (3.3)

=

n−1∑
i=0

||pi − pi+1||2 + ρ ∗
∑
pn∈P

sigmoid(− min
om∈O

||pn − om||2) (3.4)

3.2 Applying MAML to MPNet

After establishing the loss function used to adapt the planner network at test time, we build on
it by placing it in a training pipeline in accordance with the one described by the pseudocode in
algorithm 2. A summary of how this general framework is applied to our specific task can be found
below, along with the description of some aspects in which we deviate from the original MAML
[13] formulation.

3.2.1 Planner network architecture and initialisation

Since our objective is to improve on the predictive power of PNet, we use the same network
architecture for ENet (environment encoder network) and PNet, as provided by the authors of
MPNet in the open-source implementation [18]. While in [13] the weights θ are initialised randomly,
considering the already long training time of PNet combined with the added time complexity of
computing the unsupervised loss and using entire paths for training, we have decided to initialise θ
with pre-trained PNet weights obtained via the same training setup as found in [18] and depicted
in fig. 2.13.

3.2.2 MAML training setup

To draw a parallel with the general formulation from algorithm 2, the environments in which
planning is performed are interpreted as the set of tasks T and a path between two points is
considered as one training example for a given task. When it comes to the choice of loss functions,
we deviate from the standard approach by introducing separate losses Ladapt for the adaptation
steps and Lmeta for the meta-update instead of using the same for both. The unsupervised loss
described in section 3.1 is used as Ladapt and the supervised mean-squared-error loss is put in place
as Lmeta to help in more complex planning scenarios, where Ladapt comes up short (discussed in
section 3.4). Note that Lmeta is only used during training, where we allow leveraging ground
truth data. Furthermore, since Ladapt is unsupervised, the same set of data can be used for the
adaptation steps as for the meta-update. This also enables adapting PNet to an environment via
the same start/goal points as the ones we wish to predict after the refinement at test time. Specific
training parameters and implementation details are later listed in chapter 4.

3.3 Alternative methods and improvements

As noted in section 2.4.1, backpropagating through the entire computational graph when computing
the gradients of Lmeta with respect to the planner network parameters θ can be very computation-
ally intensive, allowing only a small number of adaptation steps to be undertaken during training.
To mitigate this problem with little loss of information, we tried two approaches.

First-order MAML, introduced alongside MAML by Finn et al. [13] approximates the gra-
dient ∇θ in the meta-update by only taking the gradient with respect to the modified parameters
θ′, removing the memory constraints as no variables have to be tracked between individual adap-
tation steps. In practice, this means storing ∇θ′i for each task after the final adaptation step and
taking the sum or mean of these gradients to update the parameters θ after each task mini-batch

28

Algorithm 4 Applying MAML to path planning using PNet

1: procedure PathPlanningMAML(α, β: step size hyperparameters)
2: Initialise θ with pre-trained PNet weights
3: while not done do
4: T i ← Pi, i = 0...batch_size . Select batch of environments with paths to generate
5: for all T i do
6: for number of adaptation steps do
7: Initialise adapted network parameters θ′i with θ
8: Evaluate ∇θ′iLadapt(θ

′
i,Pi) by predicting paths in Pi

9: θ′i,← θ′i − α∇θ′iLadapt(θ
′
i,Pi) . Update θ′i on every adaptation step iteration

10: θ ← θ − β∇θ
∑
T i∈T Lmeta,T i(θ

′
i,Pi) . Perform meta-update on θ via supervised loss

as shown in eq. (3.5). This way, a similar normalisation behaviour is achieved as taking the sum
of meta-losses Lmeta during the regular MAML setup.

θ = θ − β
∑
T i∈T

∇θ′iLmeta(θ′i) (3.5)

Reptile is another alternative presented by Nichol et al. [59], where instead of performing the
meta-update as an additional gradient step using Lmeta, the planner weights θ are directly pulled
towards the adapted planner weights θ′ as described in section 2.4.2. However, the absence of
Lmeta might make it unsuitable for our use-case because if we want to maintain the constraint of
using the unsupervised loss function at test time, we will have to fully rely on it during training
as well. This key characteristic of Reptile is later critically evaluated in chapter 4.

3.4 Unsupervised loss shortcomings
While the loss functions used during the adaptation period and for the meta-update are different,
fundamentally they both provide feedback on the same objective i.e. finding the shortest collision-
free path. In case of the supervised mean-squared-error, the accuracy of the feedback for a given
path prediction depends only on how close the expert demonstrations are to the optimal solution
for that path planning problem.

Figure 3.5: Comparing two different path planning problems, where the environment and the
start point are the same, but setting the obstacle avoidance weighting based on the goal could be
beneficial.

start

goal

(a) When the goal point is close to the obsta-
cles, but still reachable without any collisions,
we would want to reduce the weighting for ob-
stacle avoidance as taking a straight line would
be most beneficial.

start

goal

(b) When the goal point is behind a thin bor-
der/obstacle, obstacle avoidance should be in-
creased to avoid taking shortcuts leading to col-
lisions.

The same cannot be said about the unsupervised loss introduced in section 3.1. One thing that
can have a significant impact on its output is the weighting factor ρ, which provides the balance

29

between terms l(x), c(x) i.e. encouraging the network to find shortcuts or to avoid obstacles. One
way of finding a good value for ρ is by performing a hyperparameter search, running multiple
experiments with different ρ in order to determine the one that leads to best performance. Albeit
simple and reliable, this method can be very time-consuming as it can take a fair number of
attempts to find an acceptable value. Furthermore, by applying this weighting after c(x) has been
computed, each path point is assigned the same ρ. Such lack of flexibility can be an issue in
some scenarios, for example when the goal point is close to an obstacle, and we could benefit from
reducing the amount of obstacle avoidance in close proximity of the goal. This leads us to the
second issue with this initial formulation, which is that the collision term c(x) does not depend on
the goal point, meaning that the assigned cost only reflects the short-term effort to avoid obstacles
as opposed to providing feedback on the overall objective. Figure 3.5 presents some examples where
the initial unsupervised function is simply not sufficient. Based on this reasoning, we attempted
two modifications to the initial approach.

3.4.1 Learning a collision residual

As outlined above, having a fixed weight applied after calculating c(x) is suboptimal for multiple
reasons, so we seek to find a way to determine a value to complement the collision term of each
individual path point, obtaining a more powerful representation. Specifically, we ommit the use of
ρ and introduce a residual term Rpn ,∀pn ∈ P , creating a modified collision term as follows:

cR(x) = cR(P,O) =
∑
pn∈P

sigmoid(− min
om∈O

||pn − om||2) +Rpn (3.6)

Ladapt = l(x) + cR(x) (3.7)

To obtain Rpn , we utilise a second neural network further denotes as RNet. The inputs to
RNet contain the scene embeddings obtained via ENet [10], the point pn to which the predicted
value is assigned to as well as the goal point pgoal. The two input points are provided via positional
encodings similar to the ones used in [61, 62]. Here the role of the positional encodings is not to
include a notion of order as in the transformer architecture [63], but to map continuous input
coordinates into a higher dimensional space to help approximate a higher frequency function.
The parameters of RNet are initialised randomly, and updates are performed during training by
backpropagating through the supervised Lmeta, meaning that the network is optimised with the
ground truth paths in mind. Note that the output of RNet is only applied when computing Ladapt,
but the adapted weights θ′ depend on RNet, maintaining the connection in the computational
graph when computing the gradient ∇φLmeta during the meta-update as shown in the modified
pipeline in fig. 3.6.

Figure 3.6: Diagram of the updated MAML pipeline with the inclusion of RNet. Here Ladapt
is computed using the path predictions P̂i,j as well as the residual terms RP̂i,j

. These opera-
tions make the updated parameters θ′ dependent on RNet’s weights φ, allowing to simultenously
backpropagate through Lmeta with respect to θ and φ during the meta-update.

30

3.4.2 Learning the collision term

Motivated by the idea of embedding additional information about the expert demonstrations into
the unsupervised adaptation period, in our second modification, we replace the c(x)/cR(x) com-
putation in its entirety with a neural network further denoted as CNet. This leads to a new
unsupervised loss function formulation in eq. (3.8).

Ladapt(P,O,CNet) = l(P) +
∑
pn∈P

CNet(pn, pgoal, O) (3.8)

This not only improves the time complexity of computing Ladapt due to the absence of com-
puting minimum distances across all path and obstacle points, but also allows us to treat CNet
as a special SDF optimised for our path planning meta-learning setup. Compared to the residual
solution in section 3.4.1, the predicted collision terms CNet(x) directly correspond to c(x), making
them much easier to interpret and draw comparisons. More importantly, this relation means that
we can pre-train CNet to predict c(x) before even starting the MAML optimisation process (offline),
enabling a much faster convergence rate compared to RNet. Integrating CNet into the pipeline
is even simpler than the RNet formulation, as the entire collision term is replaced by a trainable
module. Parameter updates are performed in the same way as for RNet, by backpropagating the
gradients through Lmeta.

CNet offline pre-training

The objective here is to pre-train CNet to approximate the output of c(x), which will then be refined
in the meta-learning phase. Similarly to RNet, we also include the goal point in the network input
to allow predicting different values depending on the specific path. Getting the dataset for this
training procedure is simply a matter of generating obstacle encodings via ENet and obtaining
paths to compute the ground truth labels c(x). Another great advantage of doing this offline is
that we are not constrained to using a relatively small number of different environments, and the
provided paths do not have to be efficient collision-free paths as it is during MAML training. To
avoid overfitting to only a few environments and prevent bad generalisation performance caused by
uneven distribution of path data (paths for training PNet always go around obstacles, but we need
to predict collision terms for colliding paths as well), we generate our own dataset by uniformly
sampling random start and goal points in several thousand environments. Specific network and
training hyperparameters along with examples demonstrating CNet’s ability to approximate c(x)
are later included in chapter 4.

3.5 Notes on the optimisation process

3.5.1 Path-level performance constraints

Possibly the biggest disadvantage of our method in terms of runtime compared to MPNet is having
a path-level approach in the optimisation process. We speculate that providing feedback on the
path as a whole should lead to better generalisation across various environments/destinations as
opposed to teaching the network to mimic specific points. After all, merely having the predicted
points as close as possible to expert demonstrations does not guarantee the collision-free property,
especially when navigating tightly around obstacles. However, working with entire paths when only
having a network that predicts intermediate points does come with some disadvantages. Below we
list two main drawbacks encountered during the implementation of such an optimisation process.

31

start

goal

Figure 3.7: The L2 loss of the blue path points with respect to the expert demonstration (green) is
visibly better compared to the orange path. Due to the nature of path planning, the best solutions
often narrowly avoid obstacles, so simply aiming to get as close as possible to the ideal path does
not always lead to a collision-free outcome.

Path interpolation requirement

As already mentioned previously in section 3.1.2, to compute c(x) and thus Ladapt, it is crucial to
perform interpolation and resample the path equidistantly. This also applies to the RNet and CNet
pipelines too since the concept stays the same, they just provide a more fine-tuned modification to
the initial solution. Additionally, the same has to be done when computing Lmeta as well for the
reasons outlined in the paragraph above and also because we need to ensure that the parameter
updates promoted by Ladapt and Lmeta are somewhat related to each other, otherwise we will be
continuously overwriting the progress made in the adaptation step during the meta-update vice-
versa. Despite our attempts to parallelise computation as much as possible, this requirement often
negatively affected training times, forcing us to reduce the amount of training data and hindering
our ability to iterate on our methods quickly.

Unsupervised loss computational complexity

Examining the definition of the initial unsupervised loss Ladapt and the modifications introduced
later, it is perhaps easy to identify certain aspects of it that can incur significant performance
penalties. Besides the path interpolation described above, computing the distance between each
path point and every obstacle is especially costly in scenarios like ours, where the scene is repre-
sented by a point-cloud of many obstacles. The CNet formulation remedies this to some degree,
but computing its output and the gradient computation during backpropagation also comes with
a significant degree of computational complexity. This issue directly affects the adaptation step
time, limiting the number of adaptation iterations performed during training.

3.5.2 Training instability

Based on our experience and backed up by existing research [64], training with a MAML or MAML-
like pipeline can be quite unstable and very sensitive to small changes in hyperparameters. In this
section, we describe our main efforts to stabilise and aid the convergence of the optimisation
process.

Multi-Step Loss

Presented in the work of Antoniou et al. [64], multi-step loss (MSL) is an easily applicable method
shown to significantly increase the stability of some MAML pipelines. Motivated by a similar idea
as regular batching described above, it modifies the original MAML algorithm by taking the meta-
loss L(i)

meta at each adaptation step i instead of taking it only after the last one. The meta-update
is then performed on the weighted sum of these losses as seen in algorithm 5, where the weights
are gradually annealed over time, to ensure that eventually the adaptation loss taken after the last
step is the only significant contributing term. We implement MSL for FOMAML as well, where
the difference is taking the weighted sum of the gradients ∇θ′ , since the adapted networks with
parameters θ′ are discarded every time we finish the adaptations for a given task i.e. environment.

32

Algorithm 5 MAML for PNet using Multi-Step-Loss

1: procedure PathPlanningMAML(α, β: step size hyperparameters)
2: Initialise θ with pre-trained PNet weights
3: while not done do
4: T i ← Pi, i = 0...batch_size . Select batch of environments with paths to generate
5: for all T i do
6: for j ← 0...A do . Perform A iterations of adaptation steps
7: Update θ′i using ∇θ′iLadapt(θ

′
i) . Perform adaptation step update

8: Evaluate and store L(j)
meta,T i

(θ′i)

9: Lmeta,T i ←
∑A
j=0 wjL

(j)
meta,T i

, i = 0...batch_size . Weighted sum of losses at each step
10: Reduce weights w0...wA−1, increase wA . Anneal the MSL weights
11: θ ← θ − β∇θ

∑
T i∈T Lmeta,T i . Perform meta-update on θ via MSL

Batching

Producing multiple network predictions in batches is a commonly used technique to increase in-
ference speed via parallelised computation and to reduce the variance between network outputs,
ensuring a smoother learning curve. During training, the losses computed for each training exam-
ple are averaged within a given batch, reducing the effect of any outliers at the cost of increased
memory requirements. In general, the best practice is to use the largest batch size possible to
maximise its benefits. As it is such a widely-used method, machine learning libraries support a
wide array of operations, including batch network predictions as well as mathematical operations
on batches of data, which were particularly useful when implementing our unsupervised adaptation
loss. Another type of batching that we utilise in the context of meta-learning is related to per-
forming adaptations on multiple tasks during training and performing the meta-update by taking
the sum or mean of the losses across these tasks as described in algorithm 4.

Gradient Clipping

Clipping gradients by their norm is a good way of avoiding cases where performing a parameter
update with an irregularly large gradient would cause the whole optimisation process to diverge.
It works by scaling the gradients to ensure their L2 norm does not exceed a certain threshold
provided as a hyperparameter during training. In our experience, we have found gradient clipping
to be particularly useful when working with pre-trained networks such as MPNet and CNet. This
could be caused by the fact that these networks were pre-trained on slightly different objectives or
by the general instability of MAML in some scenarios.

3.6 Summary
In this chapter, we introduce all the building blocks that make up our final solution:

• In section 3.1 we present an unsupervised loss function, which uses the weighted sum of
two terms to provide feedback on path correctness. While this section does not include
quantifiable proof of its effectiveness, fig. 3.2, fig. 3.3 and fig. 3.4 give a good visual intuition to
what these two terms represent and are backed up by quantifiable results later in section 4.2.

• Section 3.2 places the unsupervised loss into a MAML meta-learning scenario by defining
every planning environment as a separate task and each path planning problem as a training
example within the task. The objective here is to refine the pre-trained PNet weights θ in
order to maximise PNet’s positive response to the unsupervised loss Ladapt. The optimisation
process is performed using Ladapt for the adaptation step updates and the supervised L2 loss
Lmeta for the meta-update, meaning that the L2 loss is the meta-objective i.e. what we aim
to maximise after adaptations.

• Section 3.3 and section 3.4 describes some noteworthy alternatives/modifications to our initial
meta-learning formulation. Specifically, section 3.3 present key modifiations to MAML, which
could significantly improve training performance and section 3.4 provides alternatives to
Ladapt, that could boost our model’s ability to optimise for the meta-objective.

33

• Lastly, section 3.5 gives insight on some of the challenges encountered during the optimisation
process, which were unique or rather tricky compared to other deep learning-based path
planning solutions.

34

Chapter 4

Experiments & Evaluation

Possibly due to their varying applicability in different scenarios, there is no unified benchmark for
evaluating path planning algorithms. Additionally, at the time of writing, no attempts to apply
meta-learning to this problem have been published, therefore the evaluation of our model is not
straightforward. Given that our approach aims to improve on MPNet’s planning module (PNet),
which is trained to minimise the L2 loss from the provided expert demonstrations, but this may not
be an accurate representation of finding the shortest non-colliding path (demonstrated in fig. 3.7),
during evaluation we emphasize the following metrics: path length, collision rate, L2 loss.

Following the general structure of chapter 3, we seek to answer the questions below regarding
our approach:

• Does the unsupervised loss function described in section 3.1 have the capacity to refine PNet
and improve its performance?

• Can MAML or other similar methods (FOMAML, Reptile) be applied to maximise the po-
tential of the unsupervised loss, training PNet to be sensitive to rapid refinements via a few
gradients steps?

• Does embedding additional information from the expert demonstration into the unsupervised
loss computation (section 3.4) improve performance?

4.1 Evaluation Preliminaries

4.1.1 Neural network pre-training

ENet

ENet is trained for 400 epochs in an unsupervised fashion as a contractive autoencoder (described
in fig. 2.13a). It contains 4 fully-connected hidden layers for encoding the obstacle point-clouds,
reducing their dimensionality by a factor of 100 (i.e. 2D environments are encoded from 2800 to 28
and 3D environments from 6000 to 60). To decode the signal during training, 4 additional hidden
layers with ReLU activations are put in place with layer sizes identical to the first 4, but in reverse
order. Note that ENet is not being refined during our experiments, so we only train it once for
both the 2D and 3D setting and store the learned encodings as part of our experiment dataset.

PNet

PNet is pre-trained for 500 epochs on all 100 training environments with 4000 paths each (process
described in fig. 2.13b). Its architecture is comprised of 10 hidden layers with ReLU activations,
where the input and output dimensions vary depending on the type of environment (2D or 3D) it
is operating in. Throughout our experiments, we initialise PNet with the weights obtained via the
training procedure above and maintain the same architecture. It also serves as a baseline during
evaluation.

35

4.1.2 Data Characteristics
2D Environments

We train and evaluate our models on MPNet’s Simple2D dataset included in the open-source
implementation [18]. This dataset contains 7 square-shaped obstacles of equal size, each covering
6.25% of the environment’s space and obstacles may overlap, reducing the overall coverage. As the
name suggests, the path planning problems in this 2D setting are relatively simple, so it is mainly
used to validate the soundness of our approach without expecting large improvements compared to
PNet, which already does quite well on these toy problems. In total, 30000 different point-clouds
with 1400 points each are provided to train ENet. To train/evaluate PNet, our dataset includes 100
environments with 4600 (4000 for training, 100 for validation, 500 for testing) and 10 environments
with 600 (unseen during training; 100 for validation, 500 for testing) path expert demonstrations.

3D Environments

To verify our approach in more complex environments, we make use of the Complex3D dataset
also provided in [18]. This contains 10 rectangular objects of various sizes represented as point-
clouds of 2000 points per environment. The amount of data and respective splits are the same as
in the case of Simple2D. The main difference in terms of the implementation is a different input
size to the neural networks, which needs to reflect the increase in point dimensions, otherwise our
method is not constrained by the dimensionality of the problem.

4.1.3 Obtaining evaluation metrics
Path length

Since all of our experiments are performed in 2D and 3D euclidean spaces, the path length can
be computed as the euclidean distance between each intermediate points p̂1...p̂n ∈ P̂ , where P̂ is
the set of points produced by the planner network forming a path:

l(P̂) =

n−1∑
i=0

||p̂i − p̂i+1||2 (4.1)

L2 loss

For the reasons outlined in section 3.5.1, to compute the L2 loss, we require that the points forming
the path are distributed equidistantly. This needs to be done both for the predicted paths P̂ and
the expert demonstrations P as these are obtained via RRT*, thus not evenly distributed. We
denote the sets of equidistantly distributed path points peq,0, ..., peq,n ∈ Peq and p̂eq,0, ...p̂eq,n ∈ P̂eq
respectively. Peq and P̂eq are obtained using a Tensorflow library function [60], allowing us to
approximate each path as a polyharmonic spline, which can then be evaluated at evenly spaced
query points. Following these operations, the L2 loss is computed as follows:

L2(P̂eq, Peq) =

n∑
i=0

||p̂eq,i − peq,i||2 (4.2)

Collision-rate

When detecting collisions, we must consider two important factors: the datasets used throughout
all our experiments provide environments in the form of point-clouds with no volume; the evaluated
paths are represented as a discrete set of points. Keeping these two limitations in mind, we detect
collisions by resampling each path P to a sufficiently large number of equidistant points Peq and
evaluating for each peq,0, ..., peq,n ∈ Peq if they are within range ε of any obstacle point o0, ..., om ∈ O
as seen in eq. (4.3). Conceptually, one can think of it as drawing spheres with a certain radius ε
around each obstacle point and checking whether the path points lie inside the sphere’s volume.

colliding(p) =

{
1 if minom∈O ||p− om||2 <= ε
0 otherwise (4.3)

36

By examining the obstacle point-clouds in the 2D and 3D dataset, the average minimum dis-
tance between two obstacle points is ≈ 0.04 and ≈ 0.6 respectively, so we set ε2D = 0.04/2 = 0.02
and ε3D = 0.6/2 = 0.3 to approximate the volumes represented by the point-clouds. We set the
number of path points for Peq to be n = 1000, providing sufficient amount of detail to accurately
represent collision percentage on the path level i.e percentage of points peq,0, ..., peq,n ∈ Peq
colliding with the environment as seen in eq. (4.4). We define collision rate in eq. (4.6) as the
percentage of evaluated paths Peq,0, ..., Peq,k exceeding a certain threshold of collision percentage
γ. By observing collision-rates at different γ we can evaluate approaches, where we suspect that a
large number of paths only slightly collides with the environment.

collisionPercentage(Peq) =
1

n

∑
pn∈Peq

colliding(pn) (4.4)

collidingPath(Peq) =

{
1 if collisionPercentage(Peq) >= γ
0 otherwise (4.5)

collisionRate(Peq,0, ..., Peq,k) =
1

k

k∑
i=0

collidingPath(Peq,i) (4.6)

4.2 Refining PNet with unsupervised loss

In line with the timeline of how we developed our approach, before jumping into a full meta-learning
solution, we first validate that the unsupervised loss function introduced in section 3.1 can be
effectively used to refine PNet. In essence, in these experiments we evaluate the adaptation period
of the MAML pipeline in isolation (corresponding to lines 6-9 in algorithm 4), by computing Ladapt
and performing gradient updates to PNet for multiple iterations on each environment individually.
To thoroughly examine the capabilities of Ladapt, we record the metrics from section 4.1.3 after
a different number of adaptation steps A and for various weights ρ. When it comes to ρ, we are
curious to find out whether having one of the two terms l(x), c(x) weighted higher significantly
impacts the performance. For values of A, we are interested to see how much of an effect does 1
gradient update have and if further updates can provide a significant improvement.

4.2.1 Experiment setup

Each experiment is initialised with pre-trained PNet weights, which also serves as the baseline
when comparing the obtained metrics. Likewise as in [10], environments seen and unseen during
the PNet pre-training are evaluated separately, with 500 paths per each 100 seen and 10 unseen
environments. Note that none of the paths used for evaluation have been used during the PNet
pre-training (i.e. not even the paths in the 100 seen environments have been seen during pre-
training). Each adaptation parameter update is performed with a learning rate α = 0.0001 and
the gradients are clipped by norm at clipnorm = 25.

4.2.2 Results

By looking at the path length comparisons in table 4.1 and table 4.2, as expected, it is clear that
a larger ρ causes the paths to be longer due to the higher priority placed on c(x). Overall, we
observe that taking multiple adaptation steps is certainly beneficial, but the rate of improvement
is reduced significantly after 5 steps. These results signify that with appropriate weighting, the
l(x) term has the ability to provide meaningful feedback to the neural network to promote the
prediction of shorter paths.

37

Path Length Seen Environments Unseen Environments
Simple2D ρ = 0.5 ρ = 1.0 ρ = 2.0 ρ = 0.5 ρ = 1.0 ρ = 2.0

PNet w/ 1 adapt. step 4.731 4.741 4.754 4.840 4.847 4.865
PNet w/ 5 adapt. steps 4.698 4.744 4.808 4.752 4.783 4.871
PNet w/ 10 adapt. steps 4.700 4.764 4.880 4.735 4.778 4.893

PNet 4.747 4.866
RRT* 4.671 4.654

Table 4.1: Evaluating path length on the Simple2D dataset for various weighting constants
ρ ∈ {0.5, 1.0, 2.0} and number of adaptation steps A ∈ {1, 5, 10}.

Path Length Seen Environments Unseen Environments
Complex3D ρ = 0.5 ρ = 1.0 ρ = 2.0 ρ = 0.5 ρ = 1.0 ρ = 2.0

PNet w/ 1 adapt. step 5.247 5.248 5.250 5.374 5.376 5.468
PNet w/ 5 adapt. steps 5.227 5.229 5.236 5.329 5.332 5.338
PNet w/ 10 adapt. steps 5.222 5.225 5.239 5.298 5.300 5.312

PNet 5.255 5.387
RRT* 5.184 5.197

Table 4.2: Evaluating path length on the Complex3D dataset for various weighting constants
ρ ∈ {0.5, 1.0, 2.0} and number of adaptation steps A ∈ {1, 5, 10}.

To validate Ladapt from the collision avoidance perspective, we capture the collision rate across
various collision percentages γ for both datasets in section 4.4.2 and combine these results with
the L2 loss in table 4.3 and table 4.4. In an ideal scenario, both of these metrics should indicate
the same outcomes, but as we have discussed previously, this is not entirely the case. While in
most cases, refinements via Ladapt lead to a better L2 loss and collision rate as well, various values
of ρ seem to affect the two metrics differently. According to our measurements in table 4.3 and
table 4.4, the L2 loss benefits from lower values of ρ, whereas the collision rate measured after 5
adaptation steps as depicted in section 4.4.2 is significantly improved when increasing ρ. This kind
of discrepancy between our true objective (i.e. minimise collision rate) and the meta-objective (i.e.
minimise L2 loss) becomes even more significant during meta-learning experiments. Lastly, we keep
an eye on the fact that Ladapt appears more effective on seen environments, most likely because
these have more "almost collision-free paths" (i.e. colliding paths with low collision percentage),
which can be corrected by smaller adjustments as opposed to unseen environments, where PNet
performs considerably worse.

L2 loss Seen Environments Unseen Environments
Simple2D ρ = 0.5 ρ = 1.0 ρ = 2.0 ρ = 0.5 ρ = 1.0 ρ = 2.0

PNet w/ 1 adapt. step 1.312 1.351 1.431 3.210 3.253 3.412
PNet w/ 5 adapt. steps 1.202 1.374 1.753 2.596 2.776 3.489
PNet w/ 10 adapt. steps 1.237 1.510 2.335 2.686 2.805 3.749

PNet 1.367 3.427

Table 4.3: Evaluating the L2 loss on the Simple2D dataset for various weighting constants ρ ∈
{0.5, 1.0, 2.0} and number of adaptation steps A ∈ {1, 5, 10}.

38

L2 loss Seen Environments Unseen Environments
Complex3D ρ = 0.5 ρ = 1.0 ρ = 2.0 ρ = 0.5 ρ = 1.0 ρ = 2.0

PNet w/ 1 adapt. step 1.177 1.177 1.184 2.204 2.206 2.216
PNet w/ 5 adapt. steps 1.103 1.104 1.120 1.911 1.914 1.954
PNet w/ 10 adapt. steps 1.086 1.086 1.118 1.753 1.760 1.817

PNet 1.250 2.324

Table 4.4: Evaluating the L2 loss on the Complex3D dataset for various weighting constants
ρ ∈ {0.5, 1.0, 2.0} and number of adaptation steps A ∈ {1, 5, 10}.

Figure 4.1: The 4 plots below depict the collision rate obtained after 5 adaptation steps for
various thresholds γ. At each γ, the path is labeled collision-free if its collision percentage is below
γ, allowing us to consider "almost collision-free" paths as well with up to 10% collision percentage.
Ladapt consistently improves the collision rate for the seen environments for all ρ, whereas unseen
environments benefit from higher ρ emphasizing the collision term c(x).

(a) Simple2D: Seen during pre-training (b) Simple2D: Unseen during pre-trainin

(c) Complex3D: Seen during pre-training (d) Complex3D: Unseen during pre-training

4.3 Meta-Learning to improve PNet
After showing that the unsupervised Ladapt provides meaningful feedback for adapting PNet to
a given environment, in this section we evaluate whether the three meta-learning approaches de-
scribed in section 3.2 and section 3.3 can be successfully used to increase PNet’s sensitivity to
Ladapt. As MAML, FOMAML and Reptile differ in some key aspects, first we train three separate
models with the same parameters using each of these methods to see which one is most suitable
for our application. The most promising method is then chosen to meta-learn models with various
weighting factors ρ for comparisons with the baseline PNet, Adapted PNet (i.e. PNet w/ adapt.

39

steps) obtained in section 4.2 and also RRT* where relevant, to provide a more comprehensive
overview.

4.3.1 Experiment setup

In all the experiments below, meta-learning is performed only on the 100 environments seen during
PNet pre-training, with 800 paths per environment, as opposed to the 4000 training samples
available due to performance constraints explained in section 3.5.1. Comparisons between the
three models regarding their learning progress are made by recording a validation loss after each
epoch. During validation, we perform 5 adaptation steps for every environment (including both
100 seen and 10 unseen) using 100 paths each and report the L2 loss. This gives us a good
understanding, whether the performance on the meta-ojective is improving over time. To evaluate
the best performing method across various ρ, the same 500 paths per environment are used as in
section 4.2. The learning rates during meta-learning and evaluation are always set to α = 0.0001,
β = 0.0001, the gradients are clipped by norm with clipnom = 25.0, the number of adaptation
steps is A = 5.

4.3.2 Results

When comparing which method is best suited for our problem, we observe vastly different results.
In the past, Reptile has shown promise in meta-learning scenarios where the equivalent MAML
formulation would have Ladapt and Lmeta as the same function, therefore the use of Lmeta can be
mitigated by essentially pulling the network weights in the direction of the adapted parameters θ′
as described in section 2.4.2. Since in our case Ladapt is a less informed unsupervised loss function
and gives weaker feedback on the overall path planning problem than the expert demonstrations
contained within Lmeta, the Reptile meta-update guided by only Ladapt gradually deteriorates the
overall performance as depicted in fig. 4.8b, therefore we will not consider Reptile in follow-up
experiments. In terms of their approach, MAML and FOMAML are much more closely related,
as they mostly share the same procedures, except for the meta-update. In the FOMAML meta-
gradient derivation in section 2.4.2 we notice that MAML includes several second-order gradient
terms influenced by Ladapt, whereas FOMAML omits these. Looking at fig. 4.8a, we speculate that
the unstable learning progress of MAML can be attributed to these second-order terms, making
FOMAML the clear winner of this comparison.

(a) MAML vs FOMAML validation loss (b) Reptile validation loss

Figure 4.2: Validation losses measured during the training of MAML, FOMAML and Reptile. FO-
MAML is clearly the most suitable method for our use-case. MAML suffers from great instability,
most likely due to noise in the second derivative terms coming from the Lmeta. Reptile is funde-
mantally unsuitable because of the absence of Lmeta during training and the updates promoted by
Ladapt pull it away from the objective over-time.

After establishing FOMAML as the best performing method in the first half of this experiment,
we train separate models with various weights ρ ∈ {0.5, 1.0, 2.0} on both the Simple2D and Com-
plex3D datasets. Here, we are interested in not only whether the FOMAML approach outperforms
pre-trained PNet, but we also want to see how it compares to Adapted PNet from section 4.2 i.e. if
the FOMAML model became more sensitive to Ladapt. From table 4.5, our meta-learned method
consistently produces a better path length than Adapted PNet, indicating that the responsiveness

40

to the l(x) term in Ladapt has indeed been increased. More importantly, the fact that the L2

loss has also been substantially improved across the board is a sign of our meta-learning approach
being successful, since this metric is the meta-objective of the optimisation process. Unfortunately,
this isn’t fully reflected in the collision rate. By examining fig. 4.3, we can see that in the seen
environments, our model produces a significant number of paths with collision percentages in the
6-10% range, but overall the amount of collisions (0% collision percentage) is higher than in the
case of Adapted PNet. We suspect that because this problem is rather simple, RRT* manages
to explore the scene very well using its sampling-based approach, outputting ground truth paths
that are very close to obstacle edges, leading to inconsistency between the L2 loss and collision
rate. However, the marginal improvement of collision rate in unseen environments, where PNet
performs considerably worse leaving more room for refinement, does indicate our model’s ability
to reduce collisions.

Path Length Seen Environments Unseen Environments
Simple2D ρ = 0.5 ρ = 1.0 ρ = 2.0 ρ = 0.5 ρ = 1.0 ρ = 2.0

PNet w/ 5 adapt. steps 4.698 4.744 4.808 4.752 4.783 4.871
FOMAML w/ 5 adapt. steps 4.675 4.678 4.684 4.707 4.718 4.751

PNet 4.746 4.866
RRT* 4.671 4.654

Table 4.5: The meta-learned FOMAML model clearly outperforms PNet, Adapted PNet and gets
close to the ground truth RRT* path length, especially on the seen environments in Simple2D.

L2 loss Seen Environments Unseen Environments
Simple2D ρ = 0.5 ρ = 1.0 ρ = 2.0 ρ = 0.5 ρ = 1.0 ρ = 2.0

PNet w/ 5 adapt. steps 1.202 1.374 1.753 2.596 2.776 3.489
FOMAML w/ 5 adapt. steps 1.071 1.079 1.107 2.471 2.436 2.578

PNet 1.367 3.427

Table 4.6: The L2 loss is reduced across the board in Simple2D, with most significant relative
improvements achieved for larger ρ.

(a) Simple2D: Seen during pre-training (b) Simple2D: Unseen during pre-training

Figure 4.3: Collision rate comparison between RRT*, PNet, Adapted PNet with ρ = 2.0 (best
overall collision rate from section 4.4.2) and FOMAML with ρ = 2.0 on the Simple2D dataset.
FOMAML struggles to improve the collision rate in seen environments despite a better L2 loss,
but boosts the performance slightly in unseen environments.

Looking at the results obtained on the Complex3D dataset, the path length and L2 metrics

41

in table 4.7, table 4.8 are consistent with the 2D case, demonstrating that FOMAML indeed
improves on Adapted PNet. The significant reduction in the L2 loss on unseen environments
is particularly promising, as it shows that even despite only using 20% of the available dataset
for meta-learning, our model doesn’t overfit and considerably outperforms Adapted PNet. The
collision rates plotted in fig. 4.5 support our hypothesis from the 2D dataset evaluation regarding
the suboptimal ground truth data, since here we see a consistent decrease in collisions for both seen
and unseen environments, and the slopes of the curves plotted across different collision percentages
are also much more similar. Lastly, we note that while still maintaining the overall tendencies,
the differences in results achieved for various weighting factors ρ have been noticeably reduced,
suggesting that we are getting close to exhausting the potential of the current unsupervised loss
formulation.

Path Length Seen Environments Unseen Environments
Complex3D ρ = 0.5 ρ = 1.0 ρ = 2.0 ρ = 0.5 ρ = 1.0 ρ = 2.0

PNet w/ 5 adapt. steps 5.227 5.229 5.236 5.330 5.332 5.338
FOMAML w/ 5 adapt. steps 5.193 5.196 5.206 5.257 5.258 5.268

PNet 5.255 5.387
RRT* 5.184 5.197

Table 4.7: The path length is also reduced in Complex3D, getting quite close to the ground truth
RRT* path length in seen environments.

L2 loss Seen Environments Unseen Environments
Complex3D ρ = 0.5 ρ = 1.0 ρ = 2.0 ρ = 0.5 ρ = 1.0 ρ = 2.0

PNet w/ 5 adapt. steps 1.103 1.104 1.120 1.911 1.914 1.954
FOMAML w/ 5 adapt. steps 0.871 0.878 0.911 1.460 1.446 1.480

PNet 1.250 2.324

Table 4.8: The L2 loss is significantly improved in Complex3D, especially in the unseen environ-
ments. Interestingly, the difference between various values of ρ is reduced after meta-learning.

(a) Simple2D: Seen during pre-training (b) Simple2D: Unseen during pre-trainin

Figure 4.4: Collision rate comparison between RRT*, PNet, Adapted PNet with ρ = 2.0 and
FOMAML with ρ = 2.0 on the Complex3D dataset. Our model achieves noticeable reduction in
collision rate in all environments.

42

Figure 4.5: In both 2D and 3D environments, the paths generated by FOMAML (black) after
adaptation via Ladapt maintain a lower average L2 loss to the ground truth paths (blue) than the
paths generated by Adapted PNet (green), resulting in better paths overall.

4.3.3 Limiting factors
Besides the inflexible unsupervised Ladapt function to which we dedicate section 3.4 and sec-
tion 4.4 of this report, there are two other important limitations of our solution, which lead to the
most common failure cases depicted in fig. 4.6, fig. 4.7.

Figure 4.6: One of the most common failure cases, especially on the Simple2D dataset is when
despite our model doing a better job of optimising for the training meta-objective i.e. L2 loss,
the predicted paths still collide with the environment. On the other hand, Adapted Pnet with the
same number of adaptation steps (5 steps) manages to avoid collisions by keeping further away
from the ground truth path.

One type of common errors is caused by the issue encountered with the Simple2D dataset,

43

where the ground truth paths generated by the RRT* algorithm are simply too close to the
obstacle edges, and our model fails to produce collision-free paths even though it is doing a good
job of minimising the L2 loss. The second problem is related to the instability of the training
setup, forcing us to set fairly low learning rates and frequently apply gradient clipping, resulting
in a slow learning process. When looking at the paths generated by our network, there are
many instances, where we can see by comparing to Adapted PNet, that the response to Ladapt has
definitely increased, however not to the extent that it would fully correct the path.

Figure 4.7: Due to the small learning rates enforced by the unstable optimisation process, a number
of colliding paths a very close to being fully corrected. In this image we can see how much more
sensitive FOMAML is to adaptations as opposed to Adapted PNet, yet the path is still not entirely
fixed.

4.4 Alternative formulations
In these experiments, we implement the two modifications to the initial unsupervised Ladapt de-
scribed in section 3.4, observe what the networks taking part in the new Ladapt computation learn
and compare their performance to our initial approach.

4.4.1 Experiment setup

For both RNet and CNet, we use the same neural network architecture with 5 hidden layers and
ReLU activations. The inputs to both networks are composed of the scene encodings generated by
ENet and the positional encodings of the start and goal points, using 5 sine and 5 cosine encodings
for each input signal. Prior to meta-learning, the only difference between RNet and CNet is that
CNet is pre-trained to predict c(x) on 5000 environments from the Simple2D dataset as it will fully
replace the computation of the collision avoidance term in the modified Ladapt. The optimisation
process is performed for 20 epochs, same as the FOMAML experiments with fixed ρ. Considering
that the methods evaluated in this section are not the main contribution of this master’s thesis
and due to time constraints, these solutions are only attempted as proof-of-concept, therefore only
trained on the Simple2D dataset.

4.4.2 Results

From the results displayed in table 4.9, table 4.10 and fig. 4.8, we can see that the CNet archi-
tecture overall performs slightly better than RNet and the FOMAML experiments with fixed ρ,
but in general, the differences are not very significant. While this does not necessarily mean that
the presented modifications cannot provide some benefits, it is difficult to draw definitive conclu-
sions from such a limited amount of experiments. What particularly stands out is that the CNet
architecture, which fully replaces the collision term calculation during meta-learning, is still able
to outperform Adapted PNet when it comes to the L2 loss. This indicates that CNet might be

44

learning a collision term representation that helps further minimise the L2 loss, possibly leading to
a better end result than FOMAML with a fixed weight if trained for more epochs, allowing CNet
to learn more.

Path Length Seen Environments Unseen Environments
Simple2D ρ = 0.5 ρ = 1.0 ρ = 2.0 ρ = 0.5 ρ = 1.0 ρ = 2.0

PNet w/ 5 adapt. steps 4.698 4.744 4.808 4.752 4.783 4.871
FOMAML w/ 5 adapt. steps 4.675 4.678 4.684 4.707 4.718 4.751

FOMAML w/ RNET 4.681 4.754
FOMAML w/ CNET 4.673 4.729

Table 4.9: Path length comparison of RNet, CNet and FOMAML with various fixed weights ρ. No
considerable improvements are observed, but neither RNet nor CNet fall behind.

L2 loss Seen Environments Unseen Environments
Simple2D ρ = 0.5 ρ = 1.0 ρ = 2.0 ρ = 0.5 ρ = 1.0 ρ = 2.0

PNet w/ 5 adapt. steps 1.202 1.374 1.753 2.596 2.776 3.489
FOMAML w/ 5 adapt. steps 1.071 1.079 1.107 2.471 2.436 2.578

FOMAML w/ RNET 1.094 2.53
FOMAML w/ CNET 1.063 2.4

Table 4.10: CNet is showing signs of being superior to RNet with improved L2 loss in seen and
unseen environments, despite fully relying on CNet predictions for the collision term c(x).

(a) Simple2D: Seen during pre-training (b) Simple2D: Unseen during pre-training

Figure 4.8: In both seen and unseen environments, RNet and CNet show similar collision-rate
tendencies to FOMAML with fixed weights with very marginal differences.

The slope of the learning curves in fig. 4.9 supports our hypothesis that the CNet architecture
is worth pursuing further as it looks quite likely that with a longer training time, it could surpass
FOMAML with fixed ρ. Another interesting finding depicted in fig. 4.10 is that based on the
updates from Lmeta, CNet seems to learn that the ideal paths tend to be focused in close proximity
of the obstacles, which further indicates that this representation could provide extra benefits.
Unfortunately, due to the time constraints of this project and already long training times (2 days
for 20 epochs), additional explorations of this method are out of the scope of this work.

45

Figure 4.9: The slope of the validation loss curve of the CNet architecture suggests that it might
lead to a noticeable improvement compared to FOMAML with fixed ρ given more training time.

(a) Pre-trained CNet heatmap before meta-learning (b) CNet heatmap after meta-learning

Figure 4.10: Heatmaps depicting the values predicted by CNet before and after meta-learning.
Thanks to the information from ground truth paths, CNet learns to prefer paths that go narrowly
around the obstacles.

4.5 Summary

At the beginning of this chapter we outlined three main questions that we wished to answer during
the evaluation of our approach. By performing relevant experiments in 2D/3D environments and
collecting meaningful metrics defined in section 4.1, we arrived at the following conclusions:

• In section 4.2 we showed that by refining PNet using a set of paths, the unsupervised loss
Ladapt does provide sufficient feedback to improve PNet’s performance on the selected paths.
While the improvements are not very significant, they are consistently maintained over both
tested datasets, indicating that it can be relied upon during meta-learning.

• In section 4.3, first we evaluate which method out of MAML, First-order MAML (FOMAML),
Reptile is most suitable for our approach. After FOMAML emerges as the clear winner of
the comparison, we train a number of models with varying parameters and show that our
model responds significantly better to refinements by Ladapt as the non-meta-learned PNet
model. Lastly, we list what we consider to be the three most important limiting factors of
our method and provide examples of common failure cases associated with them.

46

• While the modified versions of Ladapt evaluated in section 4.4 did not lead to an immediate
performance boost, we do think that the idea of embedding information from the ground
truth into the unsupervised loss warrants further exploration based on our findings.

47

Chapter 5

Conclusion

This work is motivated by prior research in path planning neural networks (PNet) [10], which
provides a highly applicable solution for robot path planning utilising point-cloud information
about the environment, possibly obtained via lidar measurements in practice. Our contribution
enhances the predictive capabilities of these networks in three steps:

1. We address one of PNet’s [10] disadvantages of being trained in a supervised fashion to predict
individual path segments instead of outputting entire paths by showing that its performance
can be enhanced by further training with an unsupervised loss function providing feedback
on the path-level.

2. As the main focal point of this master’s thesis, we apply three common meta-learning ap-
proaches and demonstrate their ability to maximise the performance improvements achieved
by the unsupervised loss function.

3. Identifying the strict mathematical formulation of the unsupervised loss as a possible bot-
tleneck, additional methods are explored to fully utilise the capacity of our meta-learning
pipeline.

To validate the proposed approach, we define three key metrics reported at each of the stages
listed above, tracking whether the obtained results match our expectations. We also provide
qualitative comparisons between the attempted meta-learning techniques and state hypotheses on
why one was clearly the most suitable for this task. Lastly, a discussion on the main limiting
factors of our solution is included that could be addressed in future work.

Overall, we consider the outcomes of this work to be generally positive. We have succeeded
in our main goal of demonstrating that meta-learning can be successfully applied in this domain,
showing consistent improvement in most scenarios. Although the performance increase is marginal
at times and still quite far from current state-of-the-art sampling-based path planning algorithms
characterised by much longer inference times, we believe to have provided sufficient evidence to
support further pursuit of this optimisation technique.

5.1 Future Work
Given that both scientific works serving as our inspiration were presented fairly recently, in 2017 [13]
and 2019 [10] respectively, there are still plenty of unexplored pathways waiting to be addressed by
the scientific community. Following our initial results, we attempted some alternatives but couldn’t
fully follow-through on them due to the project’s limited timeline.

Different unsupervised loss formulation

Given the main focus of this project, the unsupervised loss function was only assessed in terms of its
potential to be used in meta-learning, therefore other alternatives can be considered to maximise
the refinement effectiveness. As our training pipeline does not place significant constraints on
the optimisation process as long as a similar planning network to PNet is used, learning-based
modifications such as the ones described in section 3.4 or other techniques could be utilised with
minor adjustments.

48

Obtain better training data

As described in section 4.3, our model is negatively impacted when trained with expert demonstra-
tions that are very close to the obstacles because it’s minimising the L2 loss which does not directly
guarantee less collisions. By generating new data in a way that the ground truth paths would main-
tain a certain minimum distance from the obstacles, we could increase the correspondence between
the objective of minimising the L2 loss, reducing the overall collision rate as well.

Stabilise meta-learning

In some sense, our approach fits the definition of a transfer learning optimisation process [65]
[66], as PNet is pre-trained on the MPNet objective and is being re-trained to a slightly different
meta-objective. Perhaps due to the difference in these objectives, we limit the learning rates
in our implementation to prevent unstable learning, which could potentially be improved using
Differential Adaptive Learning rates [67], meta-learned learning rates [14] or other methods.

Robot manipulator control

Considering the level of success in higher dimensional 3D spaces, we expect a similar level of
improvement on even harder problems, such as a 6 degree-of-freedom robot manipulator control
task. Given that the authors of MPNet have already experimented with such a task [68], this can
be considered a straightforward extension to our current implementation.

Enforcing path-level constraints

Thanks to the path-level response during the optimisation process, the current solution is suitable
for motion planning tasks, where the outputted path is constrained by physical limitations. For
instance, if certain joints of a robot manipulator do not have a full range of motion, this can be
reflected in the unsupervised loss computation.

49

Bibliography

[1] Apple Inc. Blurring an image. URL https://developer.apple.com/documentation/
accelerate/blurring_an_image.

[2] Kamil Krzyk. Coding deep learning for beginners — linear regression (part
3): Training with gradient descent. URL https://towardsdatascience.com/
coding-deep-learning-for-beginners-linear-regression-gradient-descent-fcd5e0fc077d.

[3] Haskell B Curry. The method of steepest descent for non-linear minimization problems.
Quarterly of Applied Mathematics, 2(3):258–261, 1944.

[4] wikipedia.org. Cmarkov decision process. URL https://en.wikipedia.org/wiki/Markov_
decision_process.

[5] Amit Patel. Introduction to a* from amit’s thoughts on pathfinding. URL http://theory.
stanford.edu/~amitp/GameProgramming/AStarComparison.html.

[6] Tom Schouwenaars, Bart De Moor, Eric Feron, and Jonathan How. Mixed integer program-
ming for multi-vehicle path planning. pages 2603–2608, 2001.

[7] A. Yershova, Leonard Jaillet, Thierry Simeon, and LaValle. Dynamic-domain rrts: Efficient
exploration by controlling the sampling domain. pages 3856 – 3861, 05 2005. doi: 10.1109/
ROBOT.2005.1570709.

[8] Liang Yang, Juntong Qi, Dalei Song, Jizhong Xiao, Jianda Han, and Yong Xia. Survey of
robot 3d path planning algorithms. Journal of Control Science and Engineering, Jul 2016.
URL https://www.hindawi.com/journals/jcse/2016/7426913/.

[9] Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel. Value iteration
networks. Advances in neural information processing systems, 29:2154–2162, 2016.

[10] Ahmed H Qureshi, Anthony Simeonov, Mayur J Bency, and Michael C Yip. Motion planning
networks. arXiv preprint arXiv:1806.05767, 2018.

[11] A. H. Qureshi, Y. Miao, A. Simeonov, and M. C. Yip. Motion planning networks: Bridging the
gap between learning-based and classical motion planners. IEEE Transactions on Robotics,
pages 1–19, 2020. doi: 10.1109/TRO.2020.3006716.

[12] Tom Jurgenson and Aviv Tamar. Harnessing reinforcement learning for neural motion plan-
ning. CoRR, abs/1906.00214, 2019. URL http://arxiv.org/abs/1906.00214.

[13] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adap-
tation of deep networks. arXiv preprint arXiv:1703.03400, 2017.

[14] Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-sgd: Learning to learn quickly for
few-shot learning. arXiv preprint arXiv:1707.09835, 2017.

[15] Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische mathe-
matik, 1(1):269–271, 1959.

[16] M. J. Bency, A. H. Qureshi, and M. C. Yip. Neural path planning: Fixed time, near-optimal
path generation via oracle imitation. pages 3965–3972, 2019. doi: 10.1109/IROS40897.2019.
8968089.

50

https://developer.apple.com/documentation/accelerate/blurring_an_image
https://developer.apple.com/documentation/accelerate/blurring_an_image
https://towardsdatascience.com/coding-deep-learning-for-beginners-linear-regression-gradient-descent-fcd5e0fc077d
https://towardsdatascience.com/coding-deep-learning-for-beginners-linear-regression-gradient-descent-fcd5e0fc077d
https://en.wikipedia.org/wiki/Markov_decision_process
https://en.wikipedia.org/wiki/Markov_decision_process
http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html
http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html
https://www.hindawi.com/journals/jcse/2016/7426913/
http://arxiv.org/abs/1906.00214

[17] Joaquin Vanschoren. Meta-learning: A survey. arXiv preprint arXiv:1810.03548, 2018.

[18] Ahmed Qureshi. Motion planning networks open-source implementation, 2018. URL https:
//github.com/ahq1993/MPNet.

[19] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[20] Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, Cam-
bridge, MA, USA, 2016. http://www.deeplearningbook.org.

[21] Nick Kanopoulos, Nagesh Vasanthavada, and Robert L Baker. Design of an image edge
detection filter using the sobel operator. IEEE Journal of solid-state circuits, 23(2):358–367,
1988.

[22] Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and time
series. The handbook of brain theory and neural networks, 3361(10):1995, 1995.

[23] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal represen-
tations by error propagation. Technical report, California Univ San Diego La Jolla Inst for
Cognitive Science, 1985.

[24] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

[25] Erik Bylow, Jürgen Sturm, Christian Kerl, Fredrik Kahl, and Daniel Cremers. Real-time
camera tracking and 3d reconstruction using signed distance functions. In Robotics: Science
and Systems, volume 2, page 2, 2013.

[26] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove.
Deepsdf: Learning continuous signed distance functions for shape representation. 2019.

[27] Steven M. LaValle. Planning Algorithms. Cambridge University Press, 2006. doi: 10.1017/
CBO9780511546877.

[28] Peter Hart, Nils Nilsson, and Bertram Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2):100–107,
1968. doi: 10.1109/tssc.1968.300136. URL https://doi.org/10.1109/tssc.1968.300136.

[29] S. Koenig and M. Likhachev. Improved fast replanning for robot navigation in unknown
terrain. 1:968–975 vol.1, 2002. doi: 10.1109/ROBOT.2002.1013481.

[30] Anthony Stentz. The focussed d* algorithm for real-time replanning. pages 1652–1659, 1995.

[31] Liying Yang, Juntong Qi, and Jianda Han. Path planning methods for mobile robots with
linear programming. Proceedings of 2012 International Conference on Modelling, Identification
and Control, ICMIC 2012, pages 641–646, 01 2012.

[32] C. S. Ma and R. H. Miller. Milp optimal path planning for real-time applications. pages 6
pp.–, 2006. doi: 10.1109/ACC.2006.1657504.

[33] Steven M. Lavalle. Rapidly-exploring random trees: A new tool for path planning. 1998.

[34] Sertac Karaman and Emilio Frazzoli. Optimal kinodynamic motion planning using incremental
sampling-based methods. pages 7681–7687, 2010.

[35] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion planning.
CoRR, abs/1105.1186, 2011. URL http://arxiv.org/abs/1105.1186.

[36] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars. Probabilistic roadmaps
for path planning in high-dimensional configuration spaces. IEEE transactions on Robotics
and Automation, 12(4):566–580, 1996.

[37] Rahul Kala. Rapidly exploring random graphs: motion planning of multiple mobile robots.
Advanced Robotics, 27(14):1113–1122, 2013.

51

https://github.com/ahq1993/MPNet
https://github.com/ahq1993/MPNet
http://www.deeplearningbook.org
https://doi.org/10.1109/tssc.1968.300136
http://arxiv.org/abs/1105.1186

[38] Sertac Karaman and Emilio Frazzoli. Sampling-based motion planning with deterministic mu-
calculus specifications. Proceedings of the IEEE Conference on Decision and Control, pages
2222–2229, 12 2009. doi: 10.1109/CDC.2009.5400278.

[39] O. Adiyatov and H. A. Varol. Rapidly-exploring random tree based memory efficient motion
planning. pages 354–359, 2013. doi: 10.1109/ICMA.2013.6617944.

[40] Dong Jia and Juris Vagners. Parallel evolutionary algorithms for uav path planning. page
6230, 2004.

[41] Gorkem Erinc and Stefano Carpin. A genetic algorithm for nonholonomic motion planning.
pages 1843–1849, 2007.

[42] Jing Xin, Huan Zhao, Ding Liu, and Minqi Li. Application of deep reinforcement learning in
mobile robot path planning. In 2017 Chinese Automation Congress (CAC), pages 7112–7116.
IEEE, 2017.

[43] Linhai Xie, Sen Wang, Andrew Markham, and Niki Trigoni. Towards monocular vision based
obstacle avoidance through deep reinforcement learning. arXiv preprint arXiv:1706.09829,
2017.

[44] Leonid Butyrev, Thorsten Edelhäußer, and Christopher Mutschler. Deep reinforcement learn-
ing for motion planning of mobile robots. arXiv preprint arXiv:1912.09260, 2019.

[45] Jingwei Zhang, Jost Tobias Springenberg, Joschka Boedecker, and Wolfram Burgard. Deep
reinforcement learning with successor features for navigation across similar environments. In
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
2371–2378. IEEE, 2017.

[46] S Aditya Gautam and Nilmani Verma. Path planning for unmanned aerial vehicle based on
genetic algorithm artificial neural network in 3d. In 2014 International Conference on Data
Mining and Intelligent Computing (ICDMIC), pages 1–5, 2014. doi: 10.1109/ICDMIC.2014.
6954257.

[47] Brian Ichter, James Harrison, and Marco Pavone. Learning sampling distributions for robot
motion planning. CoRR, abs/1709.05448, 2017. URL http://arxiv.org/abs/1709.05448.

[48] Sanjiban Choudhury, Mohak Bhardwaj, Sankalp Arora, Ashish Kapoor, Gireeja Ranade, Se-
bastian Scherer, and Debadeepta Dey. Data-driven planning via imitation learning. The
International Journal of Robotics Research, 37(13-14):1632–1672, 2018.

[49] Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio. Contractive
auto-encoders: Explicit invariance during feature extraction. In ICML, pages 833–840, 2011.
URL https://icml.cc/2011/papers/455_icmlpaper.pdf.

[50] Alex Sherstinsky. Fundamentals of recurrent neural network (RNN) and long short-term
memory (LSTM) network. CoRR, abs/1808.03314, 2018. URL http://arxiv.org/abs/
1808.03314.

[51] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning.
arXiv preprint arXiv:1509.02971, 2015.

[52] Jürgen Schmidhuber. Evolutionary principles in self-referential learning, or on learning how
to learn: the meta-meta-... hook. PhD thesis, Technische Universität München, 1987.

[53] Sebastian Thrun and Lorien Pratt. Learning to learn. Springer Science & Business Media,
2012.

[54] Devang K Naik and Richard J Mammone. Meta-neural networks that learn by learning.
In [Proceedings 1992] IJCNN International Joint Conference on Neural Networks, volume 1,
pages 437–442. IEEE, 1992.

[55] Yoshua Bengio, Samy Bengio, and Jocelyn Cloutier. Learning a synaptic learning rule. Cite-
seer, 1990.

52

http://arxiv.org/abs/1709.05448
https://icml.cc/2011/papers/455_icmlpaper.pdf
http://arxiv.org/abs/1808.03314
http://arxiv.org/abs/1808.03314

[56] Jürgen Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic
recurrent networks. Neural Computation, 4(1):131–139, 1992.

[57] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. 2016.

[58] Gregory Koch. Siamese neural networks for one-shot image recognition. 2015.

[59] Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms.
CoRR, abs/1803.02999, 2018. URL http://arxiv.org/abs/1803.02999.

[60] Tensorflow polyharmonic interpolation. URL https://www.tensorflow.org/addons/api_
docs/python/tfa/image/interpolate_spline.

[61] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoor-
thi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In
European Conference on Computer Vision, pages 405–421. Springer, 2020.

[62] Ellen D Zhong, Tristan Bepler, Joseph H Davis, and Bonnie Berger. Reconstructing continuous
distributions of 3d protein structure from cryo-em images. arXiv preprint arXiv:1909.05215,
2019.

[63] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint
arXiv:1706.03762, 2017.

[64] Antreas Antoniou, Harrison Edwards, and Amos Storkey. How to train your maml, 2019.

[65] Lisa Torrey and Jude Shavlik. Transfer learning. In Handbook of research on machine learning
applications and trends: algorithms, methods, and techniques, pages 242–264. IGI global, 2010.

[66] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on
knowledge and data engineering, 22(10):1345–1359, 2009.

[67] Saeid Iranmanesh, M Amin Mahdavi, et al. A diffesrential adaptive learning rate method for
back-propagation neural networks. World Academy of Science, Engineering and Technology,
50(1):285–288, 2009.

[68] Anthony Simeonov. Mpnet implementation on baxter robot manipulator, 2019. URL https:
//github.com/anthonysimeonov/baxter_mpnet_ompl_docker.

53

http://arxiv.org/abs/1803.02999
https://www.tensorflow.org/addons/api_docs/python/tfa/image/interpolate_spline
https://www.tensorflow.org/addons/api_docs/python/tfa/image/interpolate_spline
https://github.com/anthonysimeonov/baxter_mpnet_ompl_docker
https://github.com/anthonysimeonov/baxter_mpnet_ompl_docker

	Introduction
	Objectives
	Challenges
	Contributions
	Ethical Considerations

	Background
	Foundational Knowledge
	Deep Learning
	Signed Distance Functions

	Path planning algorithms breakdown
	Node-based algorithms
	Mathematical model-based algorithms
	Sampling-based algorithms
	Bioinspired algorithms

	Neural network-based methods
	Value Iteration Networks (VINs)
	Imitation Learning
	MPNet
	Other methods

	Meta-learning
	MAML
	First-order meta-learners
	Meta-SGD

	Summary

	Approach
	Refining MPNet via unsupervised loss
	Path predictions using PNet
	Collision feedback term derivation
	Loss function formulation

	Applying MAML to MPNet
	Planner network architecture and initialisation
	MAML training setup

	Alternative methods and improvements
	Unsupervised loss shortcomings
	Learning a collision residual
	Learning the collision term

	Notes on the optimisation process
	Path-level performance constraints
	Training instability

	Summary

	Experiments & Evaluation
	Evaluation Preliminaries
	Neural network pre-training
	Data Characteristics
	Obtaining evaluation metrics

	Refining PNet with unsupervised loss
	Experiment setup
	Results

	Meta-Learning to improve PNet
	Experiment setup
	Results
	Limiting factors

	Alternative formulations
	Experiment setup
	Results

	Summary

	Conclusion
	Future Work

